{"title":"Drinfeld模空间作为的模空间的紧致化𝐴-Drinfeld模形式的互易映射及其结果","authors":"R. Pink","doi":"10.1090/jag/772","DOIUrl":null,"url":null,"abstract":"<p>We construct a compactification of the moduli space of Drinfeld modules of rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as a moduli space of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-reciprocal maps. This is closely related to the Satake compactification but not exactly the same. The construction involves some technical assumptions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that are satisfied for a cofinal set of ideals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the special case where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A equals double-struck upper F Subscript q Baseline left-bracket t right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>A</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">F</mml:mi>\n </mml:mrow>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A=\\mathbb {F}_q[t]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N equals left-parenthesis t Superscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>t</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N=(t^n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we obtain a presentation for the graded ideal of Drinfeld cusp forms of level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and all weights and can deduce a dimension formula for the space of cusp forms of any weight. We expect similar results in general, but the proof will require more ideas.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compactification of Drinfeld moduli spaces as moduli spaces of 𝐴-reciprocal maps and consequences for Drinfeld modular forms\",\"authors\":\"R. Pink\",\"doi\":\"10.1090/jag/772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a compactification of the moduli space of Drinfeld modules of rank <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\">\\n <mml:semantics>\\n <mml:mi>r</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and level <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> as a moduli space of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-reciprocal maps. This is closely related to the Satake compactification but not exactly the same. The construction involves some technical assumptions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> that are satisfied for a cofinal set of ideals <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In the special case where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A equals double-struck upper F Subscript q Baseline left-bracket t right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>A</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">F</mml:mi>\\n </mml:mrow>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A=\\\\mathbb {F}_q[t]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N equals left-parenthesis t Superscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>t</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N=(t^n)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we obtain a presentation for the graded ideal of Drinfeld cusp forms of level <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and all weights and can deduce a dimension formula for the space of cusp forms of any weight. We expect similar results in general, but the proof will require more ideas.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/772\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/772","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Compactification of Drinfeld moduli spaces as moduli spaces of 𝐴-reciprocal maps and consequences for Drinfeld modular forms
We construct a compactification of the moduli space of Drinfeld modules of rank rr and level NN as a moduli space of AA-reciprocal maps. This is closely related to the Satake compactification but not exactly the same. The construction involves some technical assumptions on NN that are satisfied for a cofinal set of ideals NN. In the special case where A=Fq[t]A=\mathbb {F}_q[t] and N=(tn)N=(t^n), we obtain a presentation for the graded ideal of Drinfeld cusp forms of level NN and all weights and can deduce a dimension formula for the space of cusp forms of any weight. We expect similar results in general, but the proof will require more ideas.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.