一类具有一般非线性阻尼算子的强迫二阶演化方程解的极限能量界

IF 0.8 Q2 MATHEMATICS
A. Haraux
{"title":"一类具有一般非线性阻尼算子的强迫二阶演化方程解的极限能量界","authors":"A. Haraux","doi":"10.2140/tunis.2019.1.59","DOIUrl":null,"url":null,"abstract":"Under suitable growth and coercivity conditions on the nonlinear damping operator $g$ which ensure non-resonance, we estimate the ultimate bound of the energy of the general solution to the equation $\\ddot{u}(t) + Au(t) + g(\\dot{u}(t))=h(t),\\quad t\\in\\mathbb{R}^+ ,$ where $A$ is a positive selfadjoint operator on a Hilbert space $H$ and $h$ is a bounded forcing term with values in $H$. In general the bound is of the form $ C(1+ ||h||^4)$ where $||h||$ stands for the $L^\\infty$ norm of $h$ with values in $H$ and the growth of $g$ does not seem to play any role. If $g$ behaves lie a power for large values of the velocity, the ultimate bound has a quadratic growth with respect to $||h||$ and this result is optimal. If $h$ is anti periodic, we obtain a much lower growth bound and again the result is shown to be optimal even for scalar ODEs.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.59","citationCount":"3","resultStr":"{\"title\":\"On the ultimate energy bound of solutions to some forced second-order evolution equations with a general nonlinear damping operator\",\"authors\":\"A. Haraux\",\"doi\":\"10.2140/tunis.2019.1.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under suitable growth and coercivity conditions on the nonlinear damping operator $g$ which ensure non-resonance, we estimate the ultimate bound of the energy of the general solution to the equation $\\\\ddot{u}(t) + Au(t) + g(\\\\dot{u}(t))=h(t),\\\\quad t\\\\in\\\\mathbb{R}^+ ,$ where $A$ is a positive selfadjoint operator on a Hilbert space $H$ and $h$ is a bounded forcing term with values in $H$. In general the bound is of the form $ C(1+ ||h||^4)$ where $||h||$ stands for the $L^\\\\infty$ norm of $h$ with values in $H$ and the growth of $g$ does not seem to play any role. If $g$ behaves lie a power for large values of the velocity, the ultimate bound has a quadratic growth with respect to $||h||$ and this result is optimal. If $h$ is anti periodic, we obtain a much lower growth bound and again the result is shown to be optimal even for scalar ODEs.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2019.1.59\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2019.1.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在保证非共振的非线性阻尼算子$g$的适当生长和矫顽力条件下,我们估计了方程$\ddot{u}(t) + Au(t) + g(\dot{u}(t))=h(t),\quad t\in\mathbb{R}^+ ,$通解的能量极限界,其中$A$是Hilbert空间$H$上的一个正自伴随算子,$h$是一个有界强迫项,其值在$H$。一般来说,边界的形式为$ C(1+ ||h||^4)$,其中$||h||$代表$h$的$L^\infty$范数,其值为$H$,而$g$的增长似乎没有发挥任何作用。如果$g$对于较大的速度值表现为幂次,则最终边界相对于$||h||$有二次增长,此结果是最优的。如果$h$是反周期的,我们得到了一个低得多的增长界,并且再次证明即使对于标量ode也是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the ultimate energy bound of solutions to some forced second-order evolution equations with a general nonlinear damping operator
Under suitable growth and coercivity conditions on the nonlinear damping operator $g$ which ensure non-resonance, we estimate the ultimate bound of the energy of the general solution to the equation $\ddot{u}(t) + Au(t) + g(\dot{u}(t))=h(t),\quad t\in\mathbb{R}^+ ,$ where $A$ is a positive selfadjoint operator on a Hilbert space $H$ and $h$ is a bounded forcing term with values in $H$. In general the bound is of the form $ C(1+ ||h||^4)$ where $||h||$ stands for the $L^\infty$ norm of $h$ with values in $H$ and the growth of $g$ does not seem to play any role. If $g$ behaves lie a power for large values of the velocity, the ultimate bound has a quadratic growth with respect to $||h||$ and this result is optimal. If $h$ is anti periodic, we obtain a much lower growth bound and again the result is shown to be optimal even for scalar ODEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信