Payel Das, Dipankar Mahapatra, Sahana Sen Mazumder
{"title":"肠杆菌科广谱β-内酰胺酶产生的表型检测指南:单独或存在其他干扰酶","authors":"Payel Das, Dipankar Mahapatra, Sahana Sen Mazumder","doi":"10.22207/jpam.17.3.31","DOIUrl":null,"url":null,"abstract":"Antimicrobial Resistance (AMR) has been regarded as a major public health concern as a reason of millions of deaths. Extended-spectrum β-lactamase (ESBL) is considered as a leading factor contributing to this and limiting its treatment. Thus, ESBL producing Enterobacteriaceae should be discriminated from those having other mechanism conferring resistance. Several phenotypic methods have been evaluated for this purpose. Some of these are based on conventional method (DDST, CDT, ESBL E-test, Cica-β test) while others depend on automated systems (VITEK 1, VITEK 2, Phoenix, MicroScan). All the conventional methods have been found to be more specific, sensitive and cost effective than any of the automated system though they are easy to perform and interpret. Automated system also fails to detect ESBL in presence of other interfering enzymes such as AmpC, MBL or K1 enzyme. ESBL can be detected by using third-generation cephalosporin (cefotaxime or ceftazidime) or monobactam (aztreonam) in combination with clavulanate. AmpC can be distinguished by using cloxacillin-containing agar, fourth-generation cephalosporin (cefepime) or phenylboronic acid. MBL producers remain unaffected in presence of clavulanate but gets inhibited by carbapenems (imipenem, meropenem) in combination with EDTA. Cefpodoxime-clavulanate and ceftazidime- clavulanate combinations are reliable for K1 enzyme detection but are not suitable for distinguishing blaCTX–M1.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Guide Towards the Phenotypic Detection of Extended-spectrum β-lactamases Production in Enterobacteriaceae: Alone or in Presence of Other Interfering Enzymes\",\"authors\":\"Payel Das, Dipankar Mahapatra, Sahana Sen Mazumder\",\"doi\":\"10.22207/jpam.17.3.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial Resistance (AMR) has been regarded as a major public health concern as a reason of millions of deaths. Extended-spectrum β-lactamase (ESBL) is considered as a leading factor contributing to this and limiting its treatment. Thus, ESBL producing Enterobacteriaceae should be discriminated from those having other mechanism conferring resistance. Several phenotypic methods have been evaluated for this purpose. Some of these are based on conventional method (DDST, CDT, ESBL E-test, Cica-β test) while others depend on automated systems (VITEK 1, VITEK 2, Phoenix, MicroScan). All the conventional methods have been found to be more specific, sensitive and cost effective than any of the automated system though they are easy to perform and interpret. Automated system also fails to detect ESBL in presence of other interfering enzymes such as AmpC, MBL or K1 enzyme. ESBL can be detected by using third-generation cephalosporin (cefotaxime or ceftazidime) or monobactam (aztreonam) in combination with clavulanate. AmpC can be distinguished by using cloxacillin-containing agar, fourth-generation cephalosporin (cefepime) or phenylboronic acid. MBL producers remain unaffected in presence of clavulanate but gets inhibited by carbapenems (imipenem, meropenem) in combination with EDTA. Cefpodoxime-clavulanate and ceftazidime- clavulanate combinations are reliable for K1 enzyme detection but are not suitable for distinguishing blaCTX–M1.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.3.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A Guide Towards the Phenotypic Detection of Extended-spectrum β-lactamases Production in Enterobacteriaceae: Alone or in Presence of Other Interfering Enzymes
Antimicrobial Resistance (AMR) has been regarded as a major public health concern as a reason of millions of deaths. Extended-spectrum β-lactamase (ESBL) is considered as a leading factor contributing to this and limiting its treatment. Thus, ESBL producing Enterobacteriaceae should be discriminated from those having other mechanism conferring resistance. Several phenotypic methods have been evaluated for this purpose. Some of these are based on conventional method (DDST, CDT, ESBL E-test, Cica-β test) while others depend on automated systems (VITEK 1, VITEK 2, Phoenix, MicroScan). All the conventional methods have been found to be more specific, sensitive and cost effective than any of the automated system though they are easy to perform and interpret. Automated system also fails to detect ESBL in presence of other interfering enzymes such as AmpC, MBL or K1 enzyme. ESBL can be detected by using third-generation cephalosporin (cefotaxime or ceftazidime) or monobactam (aztreonam) in combination with clavulanate. AmpC can be distinguished by using cloxacillin-containing agar, fourth-generation cephalosporin (cefepime) or phenylboronic acid. MBL producers remain unaffected in presence of clavulanate but gets inhibited by carbapenems (imipenem, meropenem) in combination with EDTA. Cefpodoxime-clavulanate and ceftazidime- clavulanate combinations are reliable for K1 enzyme detection but are not suitable for distinguishing blaCTX–M1.
期刊介绍:
Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.