非阶梯式和双阶梯式船体在激流中的动力特性比较:数值研究

IF 0.5 4区 工程技术 Q4 ENGINEERING, MARINE
Arman Esfandiari, S. Tavakoli, A. Dashtimanesh
{"title":"非阶梯式和双阶梯式船体在激流中的动力特性比较:数值研究","authors":"Arman Esfandiari, S. Tavakoli, A. Dashtimanesh","doi":"10.5957/JSPD.11170053","DOIUrl":null,"url":null,"abstract":"Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Comparison between the Dynamic Behavior of the Non-stepped and Double-stepped Planing Hulls in Rough Water: A Numerical Study\",\"authors\":\"Arman Esfandiari, S. Tavakoli, A. Dashtimanesh\",\"doi\":\"10.5957/JSPD.11170053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.11170053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.11170053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 20

摘要

减少高速滑行船体在激流中的垂直运动是提高船的可操作性的最重要因素之一,这将有利于船的结构和船上的船员。近十年来,人们对阶梯式平面艇进行了研究,重点是阶梯式平面艇在静水中的性能优于非阶梯式平面艇。然而,他们在波涛汹涌的水域中的表现仍然令人怀疑。在本研究中,我们通过数值模拟双阶梯和非阶梯船体在垂直平面上遇到头波时的运动来研究这一问题。用有限体积法和流体体积法来解决这一问题。为此,使用了数值计算流体动力学代码(STARCCM1)。通过与现有实验数据的比较,评价了数值模拟的准确性。本文对船体在小于船身长度和大于船身长度两种不同波长下的动力响应进行了数值模拟。通过数值模拟,得到了垂向和俯仰运动以及垂直加速度。研究发现,当波浪长度大于船身长度时,在船底加装两个台阶,船身的升沉幅度可减小10 - 40%。它也被观察到,在其底部的两个台阶的存在下,一个刨船体的节距减少了18-32%。最后,我们观察到,当波长大于船身长度时,最大垂直加速度减小约0.2 - 0.7的重力加速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between the Dynamic Behavior of the Non-stepped and Double-stepped Planing Hulls in Rough Water: A Numerical Study
Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信