{"title":"基于WASPAS的AISI 52100钢ZnO纳米流体辅助双喷嘴脉冲MQL环境下硬车削多响应优化","authors":"Saswat Khatai, Ramanuj Kumar, A. Panda, A. Sahoo","doi":"10.3390/app131810062","DOIUrl":null,"url":null,"abstract":"Hard turning is an emerging machining technology that evolved as a substitute for grinding in the production of precision parts from hardened steel. It offers advantages such as reduced cycle times, lower costs, and environmental benefits over grinding. Hard turning is stated to be difficult because of the high hardness of the workpiece material, which causes higher tool wear, cutting temperature, surface roughness, and cutting force. In this work, a dual-nozzle minimum quantity lubrication (MQL) system’s performance assessment of ZnO nano-cutting fluid in the hard turning of AISI 52100 bearing steel is examined. The objective is to evaluate the ZnO nano-cutting fluid’s impacts on flank wear, surface roughness, cutting temperature, cutting power consumption, and cutting noise. The tool flank wear was traced to be very low (0.027 mm to 0.095 mm) as per the hard turning concern. Additionally, the data acquired are statistically analyzed using main effects plots, interaction plots, and analysis of variance (ANOVA). Moreover, a novel Weighted Aggregated Sum Product Assessment (WASPAS) optimization tool was implemented to select the optimal combination of input parameters. The following optimal input variables were found: depth of cut = 0.3 mm, feed = 0.05 mm/rev, cutting speed = 210 m/min, and flow rate = 50 mL/hr.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WASPAS Based Multi Response Optimization in Hard Turning of AISI 52100 Steel under ZnO Nanofluid Assisted Dual Nozzle Pulse-MQL Environment\",\"authors\":\"Saswat Khatai, Ramanuj Kumar, A. Panda, A. Sahoo\",\"doi\":\"10.3390/app131810062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hard turning is an emerging machining technology that evolved as a substitute for grinding in the production of precision parts from hardened steel. It offers advantages such as reduced cycle times, lower costs, and environmental benefits over grinding. Hard turning is stated to be difficult because of the high hardness of the workpiece material, which causes higher tool wear, cutting temperature, surface roughness, and cutting force. In this work, a dual-nozzle minimum quantity lubrication (MQL) system’s performance assessment of ZnO nano-cutting fluid in the hard turning of AISI 52100 bearing steel is examined. The objective is to evaluate the ZnO nano-cutting fluid’s impacts on flank wear, surface roughness, cutting temperature, cutting power consumption, and cutting noise. The tool flank wear was traced to be very low (0.027 mm to 0.095 mm) as per the hard turning concern. Additionally, the data acquired are statistically analyzed using main effects plots, interaction plots, and analysis of variance (ANOVA). Moreover, a novel Weighted Aggregated Sum Product Assessment (WASPAS) optimization tool was implemented to select the optimal combination of input parameters. The following optimal input variables were found: depth of cut = 0.3 mm, feed = 0.05 mm/rev, cutting speed = 210 m/min, and flow rate = 50 mL/hr.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810062\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810062","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
WASPAS Based Multi Response Optimization in Hard Turning of AISI 52100 Steel under ZnO Nanofluid Assisted Dual Nozzle Pulse-MQL Environment
Hard turning is an emerging machining technology that evolved as a substitute for grinding in the production of precision parts from hardened steel. It offers advantages such as reduced cycle times, lower costs, and environmental benefits over grinding. Hard turning is stated to be difficult because of the high hardness of the workpiece material, which causes higher tool wear, cutting temperature, surface roughness, and cutting force. In this work, a dual-nozzle minimum quantity lubrication (MQL) system’s performance assessment of ZnO nano-cutting fluid in the hard turning of AISI 52100 bearing steel is examined. The objective is to evaluate the ZnO nano-cutting fluid’s impacts on flank wear, surface roughness, cutting temperature, cutting power consumption, and cutting noise. The tool flank wear was traced to be very low (0.027 mm to 0.095 mm) as per the hard turning concern. Additionally, the data acquired are statistically analyzed using main effects plots, interaction plots, and analysis of variance (ANOVA). Moreover, a novel Weighted Aggregated Sum Product Assessment (WASPAS) optimization tool was implemented to select the optimal combination of input parameters. The following optimal input variables were found: depth of cut = 0.3 mm, feed = 0.05 mm/rev, cutting speed = 210 m/min, and flow rate = 50 mL/hr.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.