分数阶Riemann-Liouville型微分代数系统的线性二次优化

Q3 Physics and Astronomy
A. Nazra, Zulakmal, L. Yulianti, Muhafzan
{"title":"分数阶Riemann-Liouville型微分代数系统的线性二次优化","authors":"A. Nazra, Zulakmal, L. Yulianti, Muhafzan","doi":"10.35470/2226-4116-2020-9-4-192-197","DOIUrl":null,"url":null,"abstract":"In this article, the linear quadratic optimization problem subject to fractional order differential algebraic systems of Riemann-Liouville type is studied. The goal of this article is to find the optimal control-state pairs satisfying the dynamic constraint of the form a fractional order differential algebraic systems such that the linear quadratic objective functional is minimized. The transformation method is used to find the optimal controlstate pairs for this problem. The optimal control-state pairs is stated in terms of Mittag-Leffler function.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linear quadratic optimization for fractional order differential algebraic system of Riemann-Liouville type\",\"authors\":\"A. Nazra, Zulakmal, L. Yulianti, Muhafzan\",\"doi\":\"10.35470/2226-4116-2020-9-4-192-197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the linear quadratic optimization problem subject to fractional order differential algebraic systems of Riemann-Liouville type is studied. The goal of this article is to find the optimal control-state pairs satisfying the dynamic constraint of the form a fractional order differential algebraic systems such that the linear quadratic objective functional is minimized. The transformation method is used to find the optimal controlstate pairs for this problem. The optimal control-state pairs is stated in terms of Mittag-Leffler function.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2020-9-4-192-197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2020-9-4-192-197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了分数阶Riemann-Liouville型微分代数系统的线性二次优化问题。本文的目标是找到满足分数阶微分代数系统的动态约束的最优控制状态对,使得线性二次目标函数最小化。利用变换方法求解该问题的最优控制状态对。最优控制状态对用Mittag-Leffler函数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear quadratic optimization for fractional order differential algebraic system of Riemann-Liouville type
In this article, the linear quadratic optimization problem subject to fractional order differential algebraic systems of Riemann-Liouville type is studied. The goal of this article is to find the optimal control-state pairs satisfying the dynamic constraint of the form a fractional order differential algebraic systems such that the linear quadratic objective functional is minimized. The transformation method is used to find the optimal controlstate pairs for this problem. The optimal control-state pairs is stated in terms of Mittag-Leffler function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信