{"title":"仇恨言论研究:算法和定性评估。推特上对吉普赛人的仇恨个案研究","authors":"Stefano Pasta","doi":"10.2478/rem-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract Hate speech may be the research focus of the interdisciplinary field of hate studies, but it is also a difficult phenomenon to define. Internationally, there are several detection studies on automatically detecting hate speech. They can be grouped according to two approaches: the first includes searching using only machine learning methods, while the second includes studies that combine automatic searching with human classification. The case study on anti-Gypsy hate in Italian on Twitter in the second half of 2020 falls into the second category, and its methods are outlined here. Based on the results (annotation as ‘hate’/‘non-hate’, identification of forms of rhetoric and anti-Gypsyism), the researchers propose classifying online content according to seven indicators called the ‘spectrum of online hate’.","PeriodicalId":55657,"journal":{"name":"Research on Education and Media","volume":"15 1","pages":"130 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hate Speech Research: Algorithmic and Qualitative Evaluations. A Case Study of Anti-Gypsy Hate on Twitter\",\"authors\":\"Stefano Pasta\",\"doi\":\"10.2478/rem-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hate speech may be the research focus of the interdisciplinary field of hate studies, but it is also a difficult phenomenon to define. Internationally, there are several detection studies on automatically detecting hate speech. They can be grouped according to two approaches: the first includes searching using only machine learning methods, while the second includes studies that combine automatic searching with human classification. The case study on anti-Gypsy hate in Italian on Twitter in the second half of 2020 falls into the second category, and its methods are outlined here. Based on the results (annotation as ‘hate’/‘non-hate’, identification of forms of rhetoric and anti-Gypsyism), the researchers propose classifying online content according to seven indicators called the ‘spectrum of online hate’.\",\"PeriodicalId\":55657,\"journal\":{\"name\":\"Research on Education and Media\",\"volume\":\"15 1\",\"pages\":\"130 - 139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Education and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rem-2023-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Education and Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rem-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hate Speech Research: Algorithmic and Qualitative Evaluations. A Case Study of Anti-Gypsy Hate on Twitter
Abstract Hate speech may be the research focus of the interdisciplinary field of hate studies, but it is also a difficult phenomenon to define. Internationally, there are several detection studies on automatically detecting hate speech. They can be grouped according to two approaches: the first includes searching using only machine learning methods, while the second includes studies that combine automatic searching with human classification. The case study on anti-Gypsy hate in Italian on Twitter in the second half of 2020 falls into the second category, and its methods are outlined here. Based on the results (annotation as ‘hate’/‘non-hate’, identification of forms of rhetoric and anti-Gypsyism), the researchers propose classifying online content according to seven indicators called the ‘spectrum of online hate’.