Camila Bosenbecker , Pedro Amaral Anselmo , Roberta Zuba Andreoli , Gustavo Hiroaki Shimizu , Paulo Eugênio Oliveira , Pietro Kiyoshi Maruyama
{"title":"全国公民科学和专家收集的蜂鸟与植物相互作用数据的对比","authors":"Camila Bosenbecker , Pedro Amaral Anselmo , Roberta Zuba Andreoli , Gustavo Hiroaki Shimizu , Paulo Eugênio Oliveira , Pietro Kiyoshi Maruyama","doi":"10.1016/j.pecon.2023.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Citizen science has the potential to increase the efficiency of scientific data collection. However, such initiatives often focus on unique taxa for each record, not necessarily involving interspecific interactions. Moreover, whether openly available unstructured citizen science data can contribute to better understand ecological patterns is still not well understood. Here, we identify hummingbird-plant interactions recorded by amateur birdwatchers in the most popular online platform in Brazil, Wikiaves. Then, we evaluated how this information can benefit our understanding of interactions in a large Tropical country by comparing with data generated by experts. We also constructed a nation-wide meta-network to identify the structural roles of hummingbirds and plants. In total, 3210 interactions were compiled, with better hummingbirds and geographic coverage of citizen data in relation to expert data. The interaction network showed a modular pattern, and some plant species found as most frequently interacting here were similar to those found by experts. Nevertheless, when comparing the plant partners for hummingbirds featured in both expert and citizen data, the proportion of plants in common were generally low (usually less than 40%), indicating that amateur birdwatchers are mostly recording interactions not captured by scientists. Finally, as in other cases of compilation of interaction data, we found that sampling intensity (here, number of photographs) is a strong driver of interaction records, highlighting the unique challenge of separating biologically meaningful patterns from sampling artifacts in citizen science data. Our study illustrates the richness of citizen-gathered biodiversity data available in a megadiverse country, which show great potential to complement expert collected data.</p></div>","PeriodicalId":56034,"journal":{"name":"Perspectives in Ecology and Conservation","volume":"21 2","pages":"Pages 164-171"},"PeriodicalIF":4.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contrasting nation-wide citizen science and expert collected data on hummingbird–plant interactions\",\"authors\":\"Camila Bosenbecker , Pedro Amaral Anselmo , Roberta Zuba Andreoli , Gustavo Hiroaki Shimizu , Paulo Eugênio Oliveira , Pietro Kiyoshi Maruyama\",\"doi\":\"10.1016/j.pecon.2023.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Citizen science has the potential to increase the efficiency of scientific data collection. However, such initiatives often focus on unique taxa for each record, not necessarily involving interspecific interactions. Moreover, whether openly available unstructured citizen science data can contribute to better understand ecological patterns is still not well understood. Here, we identify hummingbird-plant interactions recorded by amateur birdwatchers in the most popular online platform in Brazil, Wikiaves. Then, we evaluated how this information can benefit our understanding of interactions in a large Tropical country by comparing with data generated by experts. We also constructed a nation-wide meta-network to identify the structural roles of hummingbirds and plants. In total, 3210 interactions were compiled, with better hummingbirds and geographic coverage of citizen data in relation to expert data. The interaction network showed a modular pattern, and some plant species found as most frequently interacting here were similar to those found by experts. Nevertheless, when comparing the plant partners for hummingbirds featured in both expert and citizen data, the proportion of plants in common were generally low (usually less than 40%), indicating that amateur birdwatchers are mostly recording interactions not captured by scientists. Finally, as in other cases of compilation of interaction data, we found that sampling intensity (here, number of photographs) is a strong driver of interaction records, highlighting the unique challenge of separating biologically meaningful patterns from sampling artifacts in citizen science data. Our study illustrates the richness of citizen-gathered biodiversity data available in a megadiverse country, which show great potential to complement expert collected data.</p></div>\",\"PeriodicalId\":56034,\"journal\":{\"name\":\"Perspectives in Ecology and Conservation\",\"volume\":\"21 2\",\"pages\":\"Pages 164-171\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2530064423000238\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2530064423000238","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Contrasting nation-wide citizen science and expert collected data on hummingbird–plant interactions
Citizen science has the potential to increase the efficiency of scientific data collection. However, such initiatives often focus on unique taxa for each record, not necessarily involving interspecific interactions. Moreover, whether openly available unstructured citizen science data can contribute to better understand ecological patterns is still not well understood. Here, we identify hummingbird-plant interactions recorded by amateur birdwatchers in the most popular online platform in Brazil, Wikiaves. Then, we evaluated how this information can benefit our understanding of interactions in a large Tropical country by comparing with data generated by experts. We also constructed a nation-wide meta-network to identify the structural roles of hummingbirds and plants. In total, 3210 interactions were compiled, with better hummingbirds and geographic coverage of citizen data in relation to expert data. The interaction network showed a modular pattern, and some plant species found as most frequently interacting here were similar to those found by experts. Nevertheless, when comparing the plant partners for hummingbirds featured in both expert and citizen data, the proportion of plants in common were generally low (usually less than 40%), indicating that amateur birdwatchers are mostly recording interactions not captured by scientists. Finally, as in other cases of compilation of interaction data, we found that sampling intensity (here, number of photographs) is a strong driver of interaction records, highlighting the unique challenge of separating biologically meaningful patterns from sampling artifacts in citizen science data. Our study illustrates the richness of citizen-gathered biodiversity data available in a megadiverse country, which show great potential to complement expert collected data.
期刊介绍:
Perspectives in Ecology and Conservation (PECON) is a scientific journal devoted to improving theoretical and conceptual aspects of conservation science. It has the main purpose of communicating new research and advances to different actors of society, including researchers, conservationists, practitioners, and policymakers. Perspectives in Ecology and Conservation publishes original papers on biodiversity conservation and restoration, on the main drivers affecting native ecosystems, and on nature’s benefits to people and human wellbeing. This scope includes studies on biodiversity patterns, the effects of habitat loss, fragmentation, biological invasion and climate change on biodiversity, conservation genetics, spatial conservation planning, ecosystem management, ecosystem services, sustainability and resilience of socio-ecological systems, conservation policy, among others.