{"title":"基于小波分解的增强Whale优化算法在深度极限学习机中的锂电池健康评估","authors":"Hairui Wang, Jie Luo, Guifu Zhu, Ya Li","doi":"10.3390/app131810079","DOIUrl":null,"url":null,"abstract":"Lithium battery health state estimation can help optimize battery usage and management strategies. In response to the challenges faced by traditional battery management systems in accurately estimating the State of Health of lithium-ion batteries and addressing issues such as capacity recovery and noise interference, this paper proposes a method based on wavelet decomposition and an improved whale optimization algorithm optimized deep extreme learning machine for estimating the SOH of lithium-ion batteries. Firstly, the lithium-ion battery capacity degradation sequence is extracted, and the wavelet decomposition method is used to decompose the battery capacity into global and local degradation trends. Next, the non-linear convergence factor and the whale optimization algorithm with adaptive weights are employed to optimize the deep extreme learning machine for predicting each trend component. Finally, the prediction results are effectively integrated to obtain the lithium-ion battery SOH. This experimental method is validated using NASA and CALCE datasets, and the results indicate that the root mean square error and mean absolute percentage error are both below 0.95%, with relative accuracy and absolute correlation coefficients exceeding 98%. This demonstrates the method’s excellent accuracy and robustness.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Whale Optimization Algorithm with Wavelet Decomposition for Lithium Battery Health Estimation in Deep Extreme Learning Machines\",\"authors\":\"Hairui Wang, Jie Luo, Guifu Zhu, Ya Li\",\"doi\":\"10.3390/app131810079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium battery health state estimation can help optimize battery usage and management strategies. In response to the challenges faced by traditional battery management systems in accurately estimating the State of Health of lithium-ion batteries and addressing issues such as capacity recovery and noise interference, this paper proposes a method based on wavelet decomposition and an improved whale optimization algorithm optimized deep extreme learning machine for estimating the SOH of lithium-ion batteries. Firstly, the lithium-ion battery capacity degradation sequence is extracted, and the wavelet decomposition method is used to decompose the battery capacity into global and local degradation trends. Next, the non-linear convergence factor and the whale optimization algorithm with adaptive weights are employed to optimize the deep extreme learning machine for predicting each trend component. Finally, the prediction results are effectively integrated to obtain the lithium-ion battery SOH. This experimental method is validated using NASA and CALCE datasets, and the results indicate that the root mean square error and mean absolute percentage error are both below 0.95%, with relative accuracy and absolute correlation coefficients exceeding 98%. This demonstrates the method’s excellent accuracy and robustness.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810079\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810079","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Whale Optimization Algorithm with Wavelet Decomposition for Lithium Battery Health Estimation in Deep Extreme Learning Machines
Lithium battery health state estimation can help optimize battery usage and management strategies. In response to the challenges faced by traditional battery management systems in accurately estimating the State of Health of lithium-ion batteries and addressing issues such as capacity recovery and noise interference, this paper proposes a method based on wavelet decomposition and an improved whale optimization algorithm optimized deep extreme learning machine for estimating the SOH of lithium-ion batteries. Firstly, the lithium-ion battery capacity degradation sequence is extracted, and the wavelet decomposition method is used to decompose the battery capacity into global and local degradation trends. Next, the non-linear convergence factor and the whale optimization algorithm with adaptive weights are employed to optimize the deep extreme learning machine for predicting each trend component. Finally, the prediction results are effectively integrated to obtain the lithium-ion battery SOH. This experimental method is validated using NASA and CALCE datasets, and the results indicate that the root mean square error and mean absolute percentage error are both below 0.95%, with relative accuracy and absolute correlation coefficients exceeding 98%. This demonstrates the method’s excellent accuracy and robustness.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.