用Ag-Cu-Ti填料钎焊Si3N4陶瓷与钼

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Tong Zhao, Deqing Mo, Li Yu, Yu Wang, Jun Li, Xue Li, D. Liu, Xiao Kun Wang, H. Gong
{"title":"用Ag-Cu-Ti填料钎焊Si3N4陶瓷与钼","authors":"Tong Zhao, Deqing Mo, Li Yu, Yu Wang, Jun Li, Xue Li, D. Liu, Xiao Kun Wang, H. Gong","doi":"10.29391/2021.100.017","DOIUrl":null,"url":null,"abstract":"A Si3N4 ceramic was successfully joined to molybdenum(Mo) using an Ag-Cu-Ti filler alloy. The interfacial microstructure of the Si3N4/Ag-Cu-Ti/Mo joint was investigated by scanning an electron microscopy, energy dispersive spectrometer, and x-ray diffraction. The results showed the joint brazed at 900˚C for 10 min was smooth, and there were no holes and cracks at the interface. A continuous reaction layer, which is composed of TiN and TiSi2, was formed near the Si3N4 ceramic, with TiN being located near the ceramic. The central part of the joint was composed of Ag- and Cu-based solid solutions. At the side near the Mo metal, there was a formation of the MoTi solid solution. The typical structure of the Si3N4/Mo joint was Si3N4/TiN  TiSi2 reaction layer/Ag(s,s) Cu(s,s)/MoTi/Mo. Because TiN and TiSi2 com-pounds are generated on the ceramic side, the microhardness of the reaction layer on the ceramic side was de-creased but still much higher than the hardness of the brazing seam and the Mo base material. The shear strength of the brazed joint was 204 MPa at room temperature.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brazing Si3N4 Ceramic to Molybdenum Using an Ag-Cu-Ti Filler\",\"authors\":\"Tong Zhao, Deqing Mo, Li Yu, Yu Wang, Jun Li, Xue Li, D. Liu, Xiao Kun Wang, H. Gong\",\"doi\":\"10.29391/2021.100.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Si3N4 ceramic was successfully joined to molybdenum(Mo) using an Ag-Cu-Ti filler alloy. The interfacial microstructure of the Si3N4/Ag-Cu-Ti/Mo joint was investigated by scanning an electron microscopy, energy dispersive spectrometer, and x-ray diffraction. The results showed the joint brazed at 900˚C for 10 min was smooth, and there were no holes and cracks at the interface. A continuous reaction layer, which is composed of TiN and TiSi2, was formed near the Si3N4 ceramic, with TiN being located near the ceramic. The central part of the joint was composed of Ag- and Cu-based solid solutions. At the side near the Mo metal, there was a formation of the MoTi solid solution. The typical structure of the Si3N4/Mo joint was Si3N4/TiN  TiSi2 reaction layer/Ag(s,s) Cu(s,s)/MoTi/Mo. Because TiN and TiSi2 com-pounds are generated on the ceramic side, the microhardness of the reaction layer on the ceramic side was de-creased but still much higher than the hardness of the brazing seam and the Mo base material. The shear strength of the brazed joint was 204 MPa at room temperature.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2021.100.017\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.017","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

用Ag-Cu-Ti填充合金成功地将Si3N4陶瓷与钼(Mo)结合。采用扫描电镜、能谱仪和x射线衍射分析了Si3N4/Ag-Cu-Ti/Mo接头的界面微观结构。结果表明:在900℃下钎焊10 min后,接头光滑,界面无孔洞和裂纹;在Si3N4陶瓷附近形成了由TiN和TiSi2组成的连续反应层,其中TiN位于陶瓷附近。接头中部由银基固溶体和铜基固溶体组成。在靠近Mo金属的一侧,形成了MoTi固溶体。Si3N4/Mo接头的典型结构为Si3N4/TiNTiSi2反应层/Ag(s,s)Cu(s,s)/MoTi/Mo。由于在陶瓷侧生成了TiN和TiSi2化合物,陶瓷侧反应层的显微硬度有所降低,但仍远高于钎焊焊缝和Mo基材的硬度。钎焊接头室温抗剪强度为204 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brazing Si3N4 Ceramic to Molybdenum Using an Ag-Cu-Ti Filler
A Si3N4 ceramic was successfully joined to molybdenum(Mo) using an Ag-Cu-Ti filler alloy. The interfacial microstructure of the Si3N4/Ag-Cu-Ti/Mo joint was investigated by scanning an electron microscopy, energy dispersive spectrometer, and x-ray diffraction. The results showed the joint brazed at 900˚C for 10 min was smooth, and there were no holes and cracks at the interface. A continuous reaction layer, which is composed of TiN and TiSi2, was formed near the Si3N4 ceramic, with TiN being located near the ceramic. The central part of the joint was composed of Ag- and Cu-based solid solutions. At the side near the Mo metal, there was a formation of the MoTi solid solution. The typical structure of the Si3N4/Mo joint was Si3N4/TiN  TiSi2 reaction layer/Ag(s,s) Cu(s,s)/MoTi/Mo. Because TiN and TiSi2 com-pounds are generated on the ceramic side, the microhardness of the reaction layer on the ceramic side was de-creased but still much higher than the hardness of the brazing seam and the Mo base material. The shear strength of the brazed joint was 204 MPa at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信