微波阻抗谱及温度对Au/BN/C界面电性能的影响

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
H. Khanfar, A. F. Qasrawi, Yasmeen Kh. Ghannam
{"title":"微波阻抗谱及温度对Au/BN/C界面电性能的影响","authors":"H. Khanfar, A. F. Qasrawi, Yasmeen Kh. Ghannam","doi":"10.1155/2017/4791347","DOIUrl":null,"url":null,"abstract":"In the current study, an Au/BN/C microwave back-to-back Schottky device is designed and characterized. The device morphology and roughness were evaluated by means of scanning electron and atomic force microscopy. As verified by the Richardson–Schottky current conduction transport mechanism which is well fitted to the experimental data, the temperature dependence of the current-voltage characteristics of the devices is dominated by the electric field assisted thermionic emission of charge carriers over a barrier height of ~0.87 eV and depletion region width of ~1.1 μm. Both the depletion width and barrier height followed an increasing trend with increasing temperature. On the other hand, the alternating current conductivity analysis which was carried out in the frequency range of 100–1400 MHz revealed the domination of the phonon assisted quantum mechanical tunneling (hopping) of charge carriers through correlated barriers (CBH). In addition, the impedance and power spectral studies carried out in the gigahertz-frequency domain revealed a resonance-antiresonance feature at frequency of  ~1.6 GHz. The microwave power spectra of this device revealed an ideal band stop filter of notch frequency of  ~1.6 GHz. The ac signal analysis of this device displays promising characteristics for using this device as wave traps.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/4791347","citationCount":"0","resultStr":"{\"title\":\"Microwave Impedance Spectroscopy and Temperature Effects on the Electrical Properties of Au/BN/C Interfaces\",\"authors\":\"H. Khanfar, A. F. Qasrawi, Yasmeen Kh. Ghannam\",\"doi\":\"10.1155/2017/4791347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, an Au/BN/C microwave back-to-back Schottky device is designed and characterized. The device morphology and roughness were evaluated by means of scanning electron and atomic force microscopy. As verified by the Richardson–Schottky current conduction transport mechanism which is well fitted to the experimental data, the temperature dependence of the current-voltage characteristics of the devices is dominated by the electric field assisted thermionic emission of charge carriers over a barrier height of ~0.87 eV and depletion region width of ~1.1 μm. Both the depletion width and barrier height followed an increasing trend with increasing temperature. On the other hand, the alternating current conductivity analysis which was carried out in the frequency range of 100–1400 MHz revealed the domination of the phonon assisted quantum mechanical tunneling (hopping) of charge carriers through correlated barriers (CBH). In addition, the impedance and power spectral studies carried out in the gigahertz-frequency domain revealed a resonance-antiresonance feature at frequency of  ~1.6 GHz. The microwave power spectra of this device revealed an ideal band stop filter of notch frequency of  ~1.6 GHz. The ac signal analysis of this device displays promising characteristics for using this device as wave traps.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/4791347\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/4791347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/4791347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究设计并表征了Au/BN/C微波背靠背肖特基器件。通过扫描电子显微镜和原子力显微镜对器件的形貌和粗糙度进行了评价。理查森-肖特基电流传导输运机制与实验数据吻合良好,结果表明,在势垒高度~0.87 eV和耗尽区宽度~1.1 μm范围内,电场辅助载流子的热离子发射主导了器件的电流-电压特性的温度依赖性。随着温度的升高,耗尽宽度和势垒高度均呈增加趋势。另一方面,在100-1400 MHz频率范围内进行的交流电导率分析揭示了声子辅助载流子通过相关势垒(CBH)的量子力学隧穿(跳变)的主导作用。此外,在千兆赫频域进行的阻抗和功率谱研究表明,在~1.6 GHz频率处存在共振-反共振特征。该器件的微波功率谱显示出一个理想的陷波频率为~1.6 GHz的带阻滤波器。对该装置的交流信号分析显示了该装置作为陷波器的良好特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microwave Impedance Spectroscopy and Temperature Effects on the Electrical Properties of Au/BN/C Interfaces
In the current study, an Au/BN/C microwave back-to-back Schottky device is designed and characterized. The device morphology and roughness were evaluated by means of scanning electron and atomic force microscopy. As verified by the Richardson–Schottky current conduction transport mechanism which is well fitted to the experimental data, the temperature dependence of the current-voltage characteristics of the devices is dominated by the electric field assisted thermionic emission of charge carriers over a barrier height of ~0.87 eV and depletion region width of ~1.1 μm. Both the depletion width and barrier height followed an increasing trend with increasing temperature. On the other hand, the alternating current conductivity analysis which was carried out in the frequency range of 100–1400 MHz revealed the domination of the phonon assisted quantum mechanical tunneling (hopping) of charge carriers through correlated barriers (CBH). In addition, the impedance and power spectral studies carried out in the gigahertz-frequency domain revealed a resonance-antiresonance feature at frequency of  ~1.6 GHz. The microwave power spectra of this device revealed an ideal band stop filter of notch frequency of  ~1.6 GHz. The ac signal analysis of this device displays promising characteristics for using this device as wave traps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信