Jonathan R. Gair, Michele Vallisneri, Shane L. Larson, John G. Baker
{"title":"用低频天基引力波探测器检验广义相对论","authors":"Jonathan R. Gair, Michele Vallisneri, Shane L. Larson, John G. Baker","doi":"10.12942/lrr-2013-7","DOIUrl":null,"url":null,"abstract":"<p>We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ~ 10<sup>?5</sup> ? 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"16 1","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2013-7","citationCount":"191","resultStr":"{\"title\":\"Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors\",\"authors\":\"Jonathan R. Gair, Michele Vallisneri, Shane L. Larson, John G. Baker\",\"doi\":\"10.12942/lrr-2013-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ~ 10<sup>?5</sup> ? 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.</p>\",\"PeriodicalId\":686,\"journal\":{\"name\":\"Living Reviews in Relativity\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2013-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.12942/lrr-2013-7\",\"citationCount\":\"191\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Relativity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.12942/lrr-2013-7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Relativity","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.12942/lrr-2013-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ~ 10?5 ? 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
期刊介绍:
Living Reviews in Relativity is a peer-reviewed, platinum open-access journal that publishes reviews of research across all areas of relativity. Directed towards the scientific community at or above the graduate-student level, articles are solicited from leading authorities and provide critical assessments of current research. They offer annotated insights into key literature and describe available resources, maintaining an up-to-date suite of high-quality reviews, thus embodying the "living" aspect of the journal's title.
Serving as a valuable tool for the scientific community, Living Reviews in Relativity is often the first stop for researchers seeking information on current work in relativity. Written by experts, the reviews cite, explain, and assess the most relevant resources in a given field, evaluating existing work and suggesting areas for further research.
Attracting readers from the entire relativity community, the journal is useful for graduate students conducting literature surveys, researchers seeking the latest results in unfamiliar fields, and lecturers in need of information and visual materials for presentations at all levels.