心肌细胞多倍体及其对心脏再生的意义。

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Peiheng Gan, Michaela Patterson, H. Sucov
{"title":"心肌细胞多倍体及其对心脏再生的意义。","authors":"Peiheng Gan, Michaela Patterson, H. Sucov","doi":"10.1146/annurev-physiol-021119-034618","DOIUrl":null,"url":null,"abstract":"In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include (a) technical and conceptual difficulties in defining a polyploid CM, (b) the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, (c) the relationship between polyploidization and other aspects of CM maturation, (d ) recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and (e) speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions. Expected final online publication date for the Annual Review of Physiology, Volume 82 is February 10, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physiol-021119-034618","citationCount":"53","resultStr":"{\"title\":\"Cardiomyocyte Polyploidy and Implications for Heart Regeneration.\",\"authors\":\"Peiheng Gan, Michaela Patterson, H. Sucov\",\"doi\":\"10.1146/annurev-physiol-021119-034618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include (a) technical and conceptual difficulties in defining a polyploid CM, (b) the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, (c) the relationship between polyploidization and other aspects of CM maturation, (d ) recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and (e) speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions. Expected final online publication date for the Annual Review of Physiology, Volume 82 is February 10, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-physiol-021119-034618\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-021119-034618\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-021119-034618","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 53

摘要

在哺乳动物中,大多数心肌细胞(CMs)变成多倍体(它们有两套以上的完整染色体)。本综述的目的是评估关于CM倍性的普遍讨论的假设,即使没有实验证明,并强调仍有待解决的关键问题。这里讨论的主题包括(a)定义多倍体CM的技术和概念上的困难,(b)活性氧作为多倍体发病的近端触发因素的候选作用,(c)多倍体化与CM成熟的其他方面之间的关系,(d)最近与非多倍体CMs亚群再生作用相关的见解,以及(e)关于为什么CMs会变成多倍体的猜测。实验操作CM倍性的新方法可能解决这些长期存在的基本问题。《生理学年度评论》第82卷的最终在线出版日期预计为2020年2月10日。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiomyocyte Polyploidy and Implications for Heart Regeneration.
In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include (a) technical and conceptual difficulties in defining a polyploid CM, (b) the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, (c) the relationship between polyploidization and other aspects of CM maturation, (d ) recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and (e) speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions. Expected final online publication date for the Annual Review of Physiology, Volume 82 is February 10, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信