{"title":"非凝性气体质量分数与数学模型对轴承空化性能的综合影响","authors":"Li-li Wang, Zengkai Liu, Guo-teng Yuan, Yu-liang Wei","doi":"10.1155/2020/8409231","DOIUrl":null,"url":null,"abstract":"The presence of cavitation in the oil film seriously affects the bearing lubrication performance and bearing capacity. Now the research of this phenomenon mostly focuses on the model of Reynolds equation (R-E equation) or Navier-Stokes equation (N-S), the influence of the two computation models is less analyzed, and the effect of noncondensable gas (NCG) mass fraction on the bearing performance is seldom studied. In the manuscript, the cavitation mechanism is studied using the mixed model of three-dimensional N-S equation and Jakobsson-Floberg-Olsson (JFO) condition of two dimensional Reynolds equation, and the influence of rotational speed and NCG mass fraction on the cavitationoil film pressure, and bearing capacity was studied. The results show that the change trend of cavitation with the rotational speed is basically consistent for N-S equation and R-E equation. The bearing capacity calculated by N-S equation is greater than that calculated by R-E equation. The peak pressure and bearing capacity of film can be improved by increasing the NCG mass fraction of lubricant and rotational speed.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2020 1","pages":"1-7"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8409231","citationCount":"0","resultStr":"{\"title\":\"Combined Influence of Noncondensable Gas Mass Fraction and Mathematical Model on Cavitation Performance of Bearing\",\"authors\":\"Li-li Wang, Zengkai Liu, Guo-teng Yuan, Yu-liang Wei\",\"doi\":\"10.1155/2020/8409231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of cavitation in the oil film seriously affects the bearing lubrication performance and bearing capacity. Now the research of this phenomenon mostly focuses on the model of Reynolds equation (R-E equation) or Navier-Stokes equation (N-S), the influence of the two computation models is less analyzed, and the effect of noncondensable gas (NCG) mass fraction on the bearing performance is seldom studied. In the manuscript, the cavitation mechanism is studied using the mixed model of three-dimensional N-S equation and Jakobsson-Floberg-Olsson (JFO) condition of two dimensional Reynolds equation, and the influence of rotational speed and NCG mass fraction on the cavitationoil film pressure, and bearing capacity was studied. The results show that the change trend of cavitation with the rotational speed is basically consistent for N-S equation and R-E equation. The bearing capacity calculated by N-S equation is greater than that calculated by R-E equation. The peak pressure and bearing capacity of film can be improved by increasing the NCG mass fraction of lubricant and rotational speed.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\"2020 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/8409231\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8409231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8409231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Combined Influence of Noncondensable Gas Mass Fraction and Mathematical Model on Cavitation Performance of Bearing
The presence of cavitation in the oil film seriously affects the bearing lubrication performance and bearing capacity. Now the research of this phenomenon mostly focuses on the model of Reynolds equation (R-E equation) or Navier-Stokes equation (N-S), the influence of the two computation models is less analyzed, and the effect of noncondensable gas (NCG) mass fraction on the bearing performance is seldom studied. In the manuscript, the cavitation mechanism is studied using the mixed model of three-dimensional N-S equation and Jakobsson-Floberg-Olsson (JFO) condition of two dimensional Reynolds equation, and the influence of rotational speed and NCG mass fraction on the cavitationoil film pressure, and bearing capacity was studied. The results show that the change trend of cavitation with the rotational speed is basically consistent for N-S equation and R-E equation. The bearing capacity calculated by N-S equation is greater than that calculated by R-E equation. The peak pressure and bearing capacity of film can be improved by increasing the NCG mass fraction of lubricant and rotational speed.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.