共价有机骨架与交联结构协同作用构建全有机低介电聚酰亚胺杂化物

IF 9.9 2区 材料科学 Q1 Engineering
Wanjing Zhao , Zhaoyang Wei , Chonghao Lu , Yizhang Tong , Jingshu Huang , Xianwu Cao , Dean Shi , Robert K.Y. Li , Wei Wu
{"title":"共价有机骨架与交联结构协同作用构建全有机低介电聚酰亚胺杂化物","authors":"Wanjing Zhao ,&nbsp;Zhaoyang Wei ,&nbsp;Chonghao Lu ,&nbsp;Yizhang Tong ,&nbsp;Jingshu Huang ,&nbsp;Xianwu Cao ,&nbsp;Dean Shi ,&nbsp;Robert K.Y. Li ,&nbsp;Wei Wu","doi":"10.1016/j.nanoms.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Polyimide (PI) is a promising electronic packaging material, but it remains challenging to obtain an all-organic PI hybrid film with decreased dielectric constant and loss without modifying the monomer. Herein, a series of all-organic PI hybrid films were successfully prepared by introducing the covalent organic framework (COF), which could induce the formation of the cross-linking structure in the PI matrix. Due to the synergistic effects of the COF fillers and the cross-linking structure, the PI/COF hybrid film containing 2 ​wt% COF exhibited the lowest dielectric constant of 2.72 and the lowest dielectric loss (tan <span><math><mrow><mi>δ</mi></mrow></math></span>) of 0.0077 ​at 1 ​MHz. It is attributed to the intrinsic low dielectric constant of COF and a large number of mesopores within the PI. Besides, the cross-linking network of PI prevents the molecular chains from stacking and improves the fraction of free volume (FFV). The molecular dynamics simulation results are well consistent with the dielectric properties data. Furthermore, the PI/COF hybrid film with 5 ​wt% COF showed a significant enhancement in breakdown strength, which increased to 412.8 ​kV/mm as compared with pure PI. In addition, the PI/COF hybrid film achieve to reduce the dielectric constant and thermal expansion coefficient (CTE). It also exhibited excellent thermal, hydrophobicity, and mechanical performance. The all-organic PI/COF hybrid films have great commercial potential as next-generation electronic packaging materials.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 4","pages":"Pages 429-438"},"PeriodicalIF":9.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of all-organic low dielectric polyimide hybrids via synergistic effect between covalent organic framework and cross-linking structure\",\"authors\":\"Wanjing Zhao ,&nbsp;Zhaoyang Wei ,&nbsp;Chonghao Lu ,&nbsp;Yizhang Tong ,&nbsp;Jingshu Huang ,&nbsp;Xianwu Cao ,&nbsp;Dean Shi ,&nbsp;Robert K.Y. Li ,&nbsp;Wei Wu\",\"doi\":\"10.1016/j.nanoms.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyimide (PI) is a promising electronic packaging material, but it remains challenging to obtain an all-organic PI hybrid film with decreased dielectric constant and loss without modifying the monomer. Herein, a series of all-organic PI hybrid films were successfully prepared by introducing the covalent organic framework (COF), which could induce the formation of the cross-linking structure in the PI matrix. Due to the synergistic effects of the COF fillers and the cross-linking structure, the PI/COF hybrid film containing 2 ​wt% COF exhibited the lowest dielectric constant of 2.72 and the lowest dielectric loss (tan <span><math><mrow><mi>δ</mi></mrow></math></span>) of 0.0077 ​at 1 ​MHz. It is attributed to the intrinsic low dielectric constant of COF and a large number of mesopores within the PI. Besides, the cross-linking network of PI prevents the molecular chains from stacking and improves the fraction of free volume (FFV). The molecular dynamics simulation results are well consistent with the dielectric properties data. Furthermore, the PI/COF hybrid film with 5 ​wt% COF showed a significant enhancement in breakdown strength, which increased to 412.8 ​kV/mm as compared with pure PI. In addition, the PI/COF hybrid film achieve to reduce the dielectric constant and thermal expansion coefficient (CTE). It also exhibited excellent thermal, hydrophobicity, and mechanical performance. The all-organic PI/COF hybrid films have great commercial potential as next-generation electronic packaging materials.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 4\",\"pages\":\"Pages 429-438\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000053\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000053","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

聚酰亚胺(PI)是一种很有前途的电子封装材料,但在不改变单体的情况下,获得介电常数和损耗都降低的全有机PI杂化膜仍然是一个挑战。本文通过引入共价有机骨架(COF),成功制备了一系列的全有机PI杂化膜,共价有机骨架可以诱导PI矩阵形成交联结构。由于COF填料和交联结构的协同作用,含2 wt% COF的PI/COF杂化膜在1 MHz时的介电常数最低,为2.72,介电损耗(tan δ)最低,为0.0077。这是由于COF的固有低介电常数和PI内大量的介孔。此外,PI的交联网络防止了分子链的堆积,提高了自由体积分数(FFV)。分子动力学模拟结果与介电性能数据吻合较好。此外,与纯PI相比,COF含量为5 wt%的PI/COF杂化膜击穿强度显著提高,达到412.8 kV/mm。此外,PI/COF杂化膜还可以降低介电常数和热膨胀系数(CTE)。它还表现出优异的热、疏水性和机械性能。有机PI/COF复合薄膜作为下一代电子封装材料具有巨大的商业潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of all-organic low dielectric polyimide hybrids via synergistic effect between covalent organic framework and cross-linking structure

Construction of all-organic low dielectric polyimide hybrids via synergistic effect between covalent organic framework and cross-linking structure

Construction of all-organic low dielectric polyimide hybrids via synergistic effect between covalent organic framework and cross-linking structure
Polyimide (PI) is a promising electronic packaging material, but it remains challenging to obtain an all-organic PI hybrid film with decreased dielectric constant and loss without modifying the monomer. Herein, a series of all-organic PI hybrid films were successfully prepared by introducing the covalent organic framework (COF), which could induce the formation of the cross-linking structure in the PI matrix. Due to the synergistic effects of the COF fillers and the cross-linking structure, the PI/COF hybrid film containing 2 ​wt% COF exhibited the lowest dielectric constant of 2.72 and the lowest dielectric loss (tan δ) of 0.0077 ​at 1 ​MHz. It is attributed to the intrinsic low dielectric constant of COF and a large number of mesopores within the PI. Besides, the cross-linking network of PI prevents the molecular chains from stacking and improves the fraction of free volume (FFV). The molecular dynamics simulation results are well consistent with the dielectric properties data. Furthermore, the PI/COF hybrid film with 5 ​wt% COF showed a significant enhancement in breakdown strength, which increased to 412.8 ​kV/mm as compared with pure PI. In addition, the PI/COF hybrid film achieve to reduce the dielectric constant and thermal expansion coefficient (CTE). It also exhibited excellent thermal, hydrophobicity, and mechanical performance. The all-organic PI/COF hybrid films have great commercial potential as next-generation electronic packaging materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信