R. Bunn, E. Burman, James Warne, Jamie Bull, J. Field
{"title":"使用S曲线轨迹跟踪建筑运营能源和碳排放——一种原型工具","authors":"R. Bunn, E. Burman, James Warne, Jamie Bull, J. Field","doi":"10.1177/01436244221145392","DOIUrl":null,"url":null,"abstract":"New and refurbished non-domestic buildings are failing to live up to their anticipated performance. Shortfalls show in excess energy consumption, high carbon dioxide emissions and other failings in quantitative and qualitative performance metrics. This paper describes the component parts of the performance gap using evidence from building performance evaluations. It introduces a way of visualising the consequences of decisions and actions that are known to compromise performance outcomes using a performance curve methodology (the S-curve) which plots performance, and the root causes of underperformance, from project inception to initial operation and beyond. The paper tests the hypothesis with two case studies. It also covers the initial development of a prototype visualisation tool designed to enable live projects to track emerging operational energy and emissions against a high energy and emissions trajectory created from empirical evidence. The tool aims to help practitioners identify key risk factors that could compromise building performance and mitigate these risks at different stages of procurement. Practical application: The Operational Energy and Carbon (OpEC) visualisation tool is designed for wide industrial application, on all sizes of a non-domestic building project, large and small. It aims to visualise the likely outturn energy performance of a project by calculating the penalties for shortcomings in project delivery. The penalties are visualised as weighted trajectories of energy and carbon dioxide emissions. The prototype tool aims to fill a gap between the capabilities of powerful energy modelling tools used in design and the capacity of non-specialist stakeholders to understand the emerging energy characteristics of a project as it moves through procurement, design, construction, and delivery.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking building operational energy and carbon emissions using S-curve trajectories—a prototype tool\",\"authors\":\"R. Bunn, E. Burman, James Warne, Jamie Bull, J. Field\",\"doi\":\"10.1177/01436244221145392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New and refurbished non-domestic buildings are failing to live up to their anticipated performance. Shortfalls show in excess energy consumption, high carbon dioxide emissions and other failings in quantitative and qualitative performance metrics. This paper describes the component parts of the performance gap using evidence from building performance evaluations. It introduces a way of visualising the consequences of decisions and actions that are known to compromise performance outcomes using a performance curve methodology (the S-curve) which plots performance, and the root causes of underperformance, from project inception to initial operation and beyond. The paper tests the hypothesis with two case studies. It also covers the initial development of a prototype visualisation tool designed to enable live projects to track emerging operational energy and emissions against a high energy and emissions trajectory created from empirical evidence. The tool aims to help practitioners identify key risk factors that could compromise building performance and mitigate these risks at different stages of procurement. Practical application: The Operational Energy and Carbon (OpEC) visualisation tool is designed for wide industrial application, on all sizes of a non-domestic building project, large and small. It aims to visualise the likely outturn energy performance of a project by calculating the penalties for shortcomings in project delivery. The penalties are visualised as weighted trajectories of energy and carbon dioxide emissions. The prototype tool aims to fill a gap between the capabilities of powerful energy modelling tools used in design and the capacity of non-specialist stakeholders to understand the emerging energy characteristics of a project as it moves through procurement, design, construction, and delivery.\",\"PeriodicalId\":50724,\"journal\":{\"name\":\"Building Services Engineering Research & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01436244221145392\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221145392","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Tracking building operational energy and carbon emissions using S-curve trajectories—a prototype tool
New and refurbished non-domestic buildings are failing to live up to their anticipated performance. Shortfalls show in excess energy consumption, high carbon dioxide emissions and other failings in quantitative and qualitative performance metrics. This paper describes the component parts of the performance gap using evidence from building performance evaluations. It introduces a way of visualising the consequences of decisions and actions that are known to compromise performance outcomes using a performance curve methodology (the S-curve) which plots performance, and the root causes of underperformance, from project inception to initial operation and beyond. The paper tests the hypothesis with two case studies. It also covers the initial development of a prototype visualisation tool designed to enable live projects to track emerging operational energy and emissions against a high energy and emissions trajectory created from empirical evidence. The tool aims to help practitioners identify key risk factors that could compromise building performance and mitigate these risks at different stages of procurement. Practical application: The Operational Energy and Carbon (OpEC) visualisation tool is designed for wide industrial application, on all sizes of a non-domestic building project, large and small. It aims to visualise the likely outturn energy performance of a project by calculating the penalties for shortcomings in project delivery. The penalties are visualised as weighted trajectories of energy and carbon dioxide emissions. The prototype tool aims to fill a gap between the capabilities of powerful energy modelling tools used in design and the capacity of non-specialist stakeholders to understand the emerging energy characteristics of a project as it moves through procurement, design, construction, and delivery.
期刊介绍:
Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.