{"title":"磷钨酸引发三氧亚甲基与第二单体开环共聚的研究","authors":"Yanhong Li, Y. Jin, Hongjuan Li, Xiang Li, Yatao Wang, Ruofan Liu, Yibo Wu","doi":"10.1155/2022/5094734","DOIUrl":null,"url":null,"abstract":"In this study, a series of polyoxymethylene copolymers are synthesized by bulk cationic ring-opening polymerization by 1,3,5-trioxane (TOX) with 1,3-dioxolane (DOX), octamethylcyclotetrasiloxane (D4), and cyclohexane oxide (CHO) as the second monomer using phosphotungstic acid (PTA) as an initiator. The polymer products were characterized by hydrogen nuclear magnetic resonance (1H-NMR), infrared spectroscopy (IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). And the copolymerization energy barrier was calculated at the b3lyp/6-31g(d) calculation level using density functional theory (DFT) to explore the copolymerization ability of the second monomer with 1,3,5-trioxane. The results showed that CHO as the second monomer more easily participated in the copolymerization reaction, and the copolymers showed better thermal stability.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Ring-Opening Copolymerization of Trioxymethylene and Second Monomer Initiated by Phosphotungstic Acid\",\"authors\":\"Yanhong Li, Y. Jin, Hongjuan Li, Xiang Li, Yatao Wang, Ruofan Liu, Yibo Wu\",\"doi\":\"10.1155/2022/5094734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a series of polyoxymethylene copolymers are synthesized by bulk cationic ring-opening polymerization by 1,3,5-trioxane (TOX) with 1,3-dioxolane (DOX), octamethylcyclotetrasiloxane (D4), and cyclohexane oxide (CHO) as the second monomer using phosphotungstic acid (PTA) as an initiator. The polymer products were characterized by hydrogen nuclear magnetic resonance (1H-NMR), infrared spectroscopy (IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). And the copolymerization energy barrier was calculated at the b3lyp/6-31g(d) calculation level using density functional theory (DFT) to explore the copolymerization ability of the second monomer with 1,3,5-trioxane. The results showed that CHO as the second monomer more easily participated in the copolymerization reaction, and the copolymers showed better thermal stability.\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5094734\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/5094734","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on Ring-Opening Copolymerization of Trioxymethylene and Second Monomer Initiated by Phosphotungstic Acid
In this study, a series of polyoxymethylene copolymers are synthesized by bulk cationic ring-opening polymerization by 1,3,5-trioxane (TOX) with 1,3-dioxolane (DOX), octamethylcyclotetrasiloxane (D4), and cyclohexane oxide (CHO) as the second monomer using phosphotungstic acid (PTA) as an initiator. The polymer products were characterized by hydrogen nuclear magnetic resonance (1H-NMR), infrared spectroscopy (IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). And the copolymerization energy barrier was calculated at the b3lyp/6-31g(d) calculation level using density functional theory (DFT) to explore the copolymerization ability of the second monomer with 1,3,5-trioxane. The results showed that CHO as the second monomer more easily participated in the copolymerization reaction, and the copolymers showed better thermal stability.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.