Banach空间中零粘性随机Boussinesq方程的不变测度

Pub Date : 2022-10-16 DOI:10.1080/14689367.2022.2128991
Shang Wu, Zhiming Liu, Jianhua Huang
{"title":"Banach空间中零粘性随机Boussinesq方程的不变测度","authors":"Shang Wu, Zhiming Liu, Jianhua Huang","doi":"10.1080/14689367.2022.2128991","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the stochastic Boussinesq equations driven by Gaussian noise on a two-dimensional domain . By the regularity estimation on the high-order Sobolev space, we prove the existence of weak solutions in non-separable Banach space. We also show that the Markov semigroup generated by the solution of stochastic Boussinesq equations is also weak Feller. Endowed with the weak-★ topology on , we prove the existence of the invariant measure by Krylov–Bogoliubov theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant measure of stochastic Boussinesq equation with zero viscosity in Banach space\",\"authors\":\"Shang Wu, Zhiming Liu, Jianhua Huang\",\"doi\":\"10.1080/14689367.2022.2128991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the stochastic Boussinesq equations driven by Gaussian noise on a two-dimensional domain . By the regularity estimation on the high-order Sobolev space, we prove the existence of weak solutions in non-separable Banach space. We also show that the Markov semigroup generated by the solution of stochastic Boussinesq equations is also weak Feller. Endowed with the weak-★ topology on , we prove the existence of the invariant measure by Krylov–Bogoliubov theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2128991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2128991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维域上高斯噪声驱动的随机Boussinesq方程。通过对高阶Sobolev空间的正则性估计,证明了不可分Banach空间弱解的存在性。我们还证明了由随机Boussinesq方程解生成的马尔可夫半群也是弱Feller。与弱者同在-★ 拓扑上,我们用Krylov–Bogoliubov定理证明了不变测度的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariant measure of stochastic Boussinesq equation with zero viscosity in Banach space
In this paper, we investigate the stochastic Boussinesq equations driven by Gaussian noise on a two-dimensional domain . By the regularity estimation on the high-order Sobolev space, we prove the existence of weak solutions in non-separable Banach space. We also show that the Markov semigroup generated by the solution of stochastic Boussinesq equations is also weak Feller. Endowed with the weak-★ topology on , we prove the existence of the invariant measure by Krylov–Bogoliubov theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信