现场生产用于农村渡槽的氯化消毒剂的原型

IF 3.7 Q1 WATER RESOURCES
Diana Marcela Cuesta Parra , Felipe Correa Mahecha , Andrés Felipe Rubio Pinzon , Davidcamilo Ramírez Bustos , Leonel Alveyro Teran Llorente , Miguel Fernando Jimenez Jimenez
{"title":"现场生产用于农村渡槽的氯化消毒剂的原型","authors":"Diana Marcela Cuesta Parra ,&nbsp;Felipe Correa Mahecha ,&nbsp;Andrés Felipe Rubio Pinzon ,&nbsp;Davidcamilo Ramírez Bustos ,&nbsp;Leonel Alveyro Teran Llorente ,&nbsp;Miguel Fernando Jimenez Jimenez","doi":"10.1016/j.wse.2023.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas. Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 10 L. This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters. Tests were performed using graphite electrodes with areas of 68.4 cm<sup>2</sup> at the laboratory scale and 1 865.0 cm<sup>2</sup> at the prototype scale. A design for experiments with different operating times, chloride concentrations, and electric current intensities was developed. The optimal operating time, sodium chloride concentration, and current intensity at the laboratory scale were 120 min, 150 g of chloride per liter, and 3 A, respectively, leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl<sub>2</sub> per kilojoule. At the prototype scale, the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min, a sodium chloride concentration of 100 g of chloride per liter, and a current intensity of 70 A, reaching an energy efficiency of 42.56 mg of Cl<sub>2</sub> per kilojoule. In addition, this study evaluated the influences of the chloride concentration, current intensity, and operating time on the production of sodium hypochlorite at the two scales, and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems. The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 1","pages":"Pages 33-40"},"PeriodicalIF":3.7000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000601/pdfft?md5=f6e56a2ca6c201ca2e1734f88c31273e&pid=1-s2.0-S1674237023000601-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts\",\"authors\":\"Diana Marcela Cuesta Parra ,&nbsp;Felipe Correa Mahecha ,&nbsp;Andrés Felipe Rubio Pinzon ,&nbsp;Davidcamilo Ramírez Bustos ,&nbsp;Leonel Alveyro Teran Llorente ,&nbsp;Miguel Fernando Jimenez Jimenez\",\"doi\":\"10.1016/j.wse.2023.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas. Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 10 L. This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters. Tests were performed using graphite electrodes with areas of 68.4 cm<sup>2</sup> at the laboratory scale and 1 865.0 cm<sup>2</sup> at the prototype scale. A design for experiments with different operating times, chloride concentrations, and electric current intensities was developed. The optimal operating time, sodium chloride concentration, and current intensity at the laboratory scale were 120 min, 150 g of chloride per liter, and 3 A, respectively, leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl<sub>2</sub> per kilojoule. At the prototype scale, the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min, a sodium chloride concentration of 100 g of chloride per liter, and a current intensity of 70 A, reaching an energy efficiency of 42.56 mg of Cl<sub>2</sub> per kilojoule. In addition, this study evaluated the influences of the chloride concentration, current intensity, and operating time on the production of sodium hypochlorite at the two scales, and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems. The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"17 1\",\"pages\":\"Pages 33-40\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674237023000601/pdfft?md5=f6e56a2ca6c201ca2e1734f88c31273e&pid=1-s2.0-S1674237023000601-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237023000601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023000601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

次氯酸钠作为难以到达地区的卫生解决方案具有巨大潜力。本研究评估了在 22 升原型机中通过电解生产次氯酸钠的情况,并确定了最佳操作参数。测试使用的石墨电极在实验室规模下的面积为 68.4 平方厘米,在原型规模下的面积为 1 865.0 平方厘米。试验设计了不同的操作时间、氯化钠浓度和电流强度。实验室规模的最佳操作时间、氯化钠浓度和电流强度分别为 120 分钟、每升 150 克氯化物和 3 A,可生产 5.02 克/升消毒剂,能效为每千焦 12.21 毫克 Cl2。在原型规模上,运行时间为 120 分钟、氯化钠浓度为 100 克/升、电流强度为 70 A 时,次氯酸钠的最大浓度为 3.99 克/升,能效为 42.56 毫克 Cl2/千焦耳。此外,该研究还评估了两种规模下氯化物浓度、电流强度和运行时间对次氯酸钠产量的影响,并制定了显示电化学系统中次氯酸钠产量和能效趋势的方程。生产这种氧化物质的 22 升原型模型有望在难以进入的地区对大量水进行消毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prototype for on-site generation of chlorinated disinfectant for use in rural aqueducts

Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas. Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 10 L. This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters. Tests were performed using graphite electrodes with areas of 68.4 cm2 at the laboratory scale and 1 865.0 cm2 at the prototype scale. A design for experiments with different operating times, chloride concentrations, and electric current intensities was developed. The optimal operating time, sodium chloride concentration, and current intensity at the laboratory scale were 120 min, 150 g of chloride per liter, and 3 A, respectively, leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl2 per kilojoule. At the prototype scale, the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min, a sodium chloride concentration of 100 g of chloride per liter, and a current intensity of 70 A, reaching an energy efficiency of 42.56 mg of Cl2 per kilojoule. In addition, this study evaluated the influences of the chloride concentration, current intensity, and operating time on the production of sodium hypochlorite at the two scales, and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems. The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信