{"title":"墨西尼亚盐度危机期间地中海海平面极限旋回的关键分析","authors":"M. Baum","doi":"10.1344/GeologicaActa2021.19.10","DOIUrl":null,"url":null,"abstract":"The Messinian Salinity Crisis (5.97-5.33Ma) may be one of the most significant periods of sea-level change in recent geologic history. During this period, evaporite deposition throughout the Mediterranean basin records a series of dramatic environmental changes as flow through the Strait of Gibraltar was restricted. In the first stage of evaporite deposition, cycles of gypsum appear in shallow basins on the margins of the Mediterranean. The complex environmental history giving rise to these cycles has been investigated for decades but remains controversial. Notably, whether the evaporites are connected to significant changes in Mediterranean sea level is an open question.\nIn one proposed model, competition between tectonic uplift and erosion at the Strait of Gibraltar gives rise to selfsustaining sea-level oscillations—limit cycles—which trigger evaporite deposition. Here I show that limit cycles are not a robust result of the proposed model and discuss how any oscillations produced by this model depend on an unrealistic formulation of a key model equation. First, I simplify the model equations and test whether limit cycles are produced in 64 million unique combinations of model parameters, finding oscillations in only 0.2% of all simulations. Next, I examine the formulation of a critical model equation representing stream channel slope over the Strait of Gibraltar, concluding that a more realistic formulation would render sea-level limit cycles improbable, if not impossible, in the proposed model.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical analysis of Mediterranean sea level limit cycles during the Messinian salinity crisis\",\"authors\":\"M. Baum\",\"doi\":\"10.1344/GeologicaActa2021.19.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Messinian Salinity Crisis (5.97-5.33Ma) may be one of the most significant periods of sea-level change in recent geologic history. During this period, evaporite deposition throughout the Mediterranean basin records a series of dramatic environmental changes as flow through the Strait of Gibraltar was restricted. In the first stage of evaporite deposition, cycles of gypsum appear in shallow basins on the margins of the Mediterranean. The complex environmental history giving rise to these cycles has been investigated for decades but remains controversial. Notably, whether the evaporites are connected to significant changes in Mediterranean sea level is an open question.\\nIn one proposed model, competition between tectonic uplift and erosion at the Strait of Gibraltar gives rise to selfsustaining sea-level oscillations—limit cycles—which trigger evaporite deposition. Here I show that limit cycles are not a robust result of the proposed model and discuss how any oscillations produced by this model depend on an unrealistic formulation of a key model equation. First, I simplify the model equations and test whether limit cycles are produced in 64 million unique combinations of model parameters, finding oscillations in only 0.2% of all simulations. Next, I examine the formulation of a critical model equation representing stream channel slope over the Strait of Gibraltar, concluding that a more realistic formulation would render sea-level limit cycles improbable, if not impossible, in the proposed model.\",\"PeriodicalId\":55107,\"journal\":{\"name\":\"Geologica Acta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1344/GeologicaActa2021.19.10\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1344/GeologicaActa2021.19.10","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Critical analysis of Mediterranean sea level limit cycles during the Messinian salinity crisis
The Messinian Salinity Crisis (5.97-5.33Ma) may be one of the most significant periods of sea-level change in recent geologic history. During this period, evaporite deposition throughout the Mediterranean basin records a series of dramatic environmental changes as flow through the Strait of Gibraltar was restricted. In the first stage of evaporite deposition, cycles of gypsum appear in shallow basins on the margins of the Mediterranean. The complex environmental history giving rise to these cycles has been investigated for decades but remains controversial. Notably, whether the evaporites are connected to significant changes in Mediterranean sea level is an open question.
In one proposed model, competition between tectonic uplift and erosion at the Strait of Gibraltar gives rise to selfsustaining sea-level oscillations—limit cycles—which trigger evaporite deposition. Here I show that limit cycles are not a robust result of the proposed model and discuss how any oscillations produced by this model depend on an unrealistic formulation of a key model equation. First, I simplify the model equations and test whether limit cycles are produced in 64 million unique combinations of model parameters, finding oscillations in only 0.2% of all simulations. Next, I examine the formulation of a critical model equation representing stream channel slope over the Strait of Gibraltar, concluding that a more realistic formulation would render sea-level limit cycles improbable, if not impossible, in the proposed model.
期刊介绍:
- Relevant conceptual developments in any area of the Earth Sciences.
- Studies presenting regional synthesis.
- Thematic issues or monographic volumes presenting the results from one or more research groups.
- Short papers reflecting interesting results or works in progress.
- Contributions and results from Research Projects, Workshops, Symposiums, Congresses and any relevant scientific activity related to Earth Sciences.
- Geologica Acta aims to stimulate rapid diffusion of results and efficient exchange of ideas between the widespread communities of Earth Science researchers (with special emphasis on Latinamerica, the Caribbean, Europe, the Mediterranean