次解析结构上gevrey向量的傅立叶型刻划及gevrey奇点的传播

IF 1.1 2区 数学 Q1 MATHEMATICS
N. Braun Rodrigues
{"title":"次解析结构上gevrey向量的傅立叶型刻划及gevrey奇点的传播","authors":"N. Braun Rodrigues","doi":"10.1017/S1474748022000020","DOIUrl":null,"url":null,"abstract":"Abstract In this work we prove a Fourier–Bros–Iagolnitzer (F.B.I.) characterisation for Gevrey vectors on hypo-analytic structures and we analyse the main differences of Gevrey regularity and hypo-analyticity concerning the F.B.I. transform. We end with an application of this characterisation on a propagation of Gevrey singularities result for solutions of the nonhomogeneous system associated with the hypo-analytic structure for analytic structures of tube type.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"22 1","pages":"2177 - 2198"},"PeriodicalIF":1.1000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A FOURIER-TYPE CHARACTERISATION FOR GEVREY VECTORS ON HYPO-ANALYTIC STRUCTURES AND PROPAGATION OF GEVREY SINGULARITIES\",\"authors\":\"N. Braun Rodrigues\",\"doi\":\"10.1017/S1474748022000020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we prove a Fourier–Bros–Iagolnitzer (F.B.I.) characterisation for Gevrey vectors on hypo-analytic structures and we analyse the main differences of Gevrey regularity and hypo-analyticity concerning the F.B.I. transform. We end with an application of this characterisation on a propagation of Gevrey singularities result for solutions of the nonhomogeneous system associated with the hypo-analytic structure for analytic structures of tube type.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"22 1\",\"pages\":\"2177 - 2198\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1474748022000020\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1474748022000020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了次解析结构上Gevrey向量的Fourier-Bros-Iagolnitzer (fbi)刻画,并分析了Gevrey正则性和次解析性在fbi变换中的主要区别。最后,我们将这一特性应用于管型解析结构的次解析结构的非齐次系统解的Gevrey奇点传播结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A FOURIER-TYPE CHARACTERISATION FOR GEVREY VECTORS ON HYPO-ANALYTIC STRUCTURES AND PROPAGATION OF GEVREY SINGULARITIES
Abstract In this work we prove a Fourier–Bros–Iagolnitzer (F.B.I.) characterisation for Gevrey vectors on hypo-analytic structures and we analyse the main differences of Gevrey regularity and hypo-analyticity concerning the F.B.I. transform. We end with an application of this characterisation on a propagation of Gevrey singularities result for solutions of the nonhomogeneous system associated with the hypo-analytic structure for analytic structures of tube type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信