{"title":"考虑高度层的多层空中交通网络建模与抗毁性分析","authors":"Guangjian Ren, Yin Liu","doi":"10.1155/2023/6525201","DOIUrl":null,"url":null,"abstract":"In this paper, a network coupling mechanism is studied to couple the air sector network, airport network, and air route network into a multilayer air network model. Then, the altitude layers are divided into three: high, medium, and low, and the arrival and departure flight procedures are also considered. By defining the association between the altitude layers and the waypoints, a multilayer air network model considering the altitude layer is constructed. Then, the line graph theory is used to redefine the nodes and edges, and the network is reconstructed to obtain a new single-layer one which is easy to calculate. Finally, a case study is carried out in Chengdu control area. The results show that the proposed model is closer to the reality, and the invulnerability performance is more referential. Besides, it also reflects the impact of altitude layers on the efficiency of airspace. The results are helpful for air traffic controllers to manage airspace better and have significance for promoting air traffic safety and stability.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Invulnerability Analysis of Multilayer Air Traffic Network considering Altitude Layer\",\"authors\":\"Guangjian Ren, Yin Liu\",\"doi\":\"10.1155/2023/6525201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a network coupling mechanism is studied to couple the air sector network, airport network, and air route network into a multilayer air network model. Then, the altitude layers are divided into three: high, medium, and low, and the arrival and departure flight procedures are also considered. By defining the association between the altitude layers and the waypoints, a multilayer air network model considering the altitude layer is constructed. Then, the line graph theory is used to redefine the nodes and edges, and the network is reconstructed to obtain a new single-layer one which is easy to calculate. Finally, a case study is carried out in Chengdu control area. The results show that the proposed model is closer to the reality, and the invulnerability performance is more referential. Besides, it also reflects the impact of altitude layers on the efficiency of airspace. The results are helpful for air traffic controllers to manage airspace better and have significance for promoting air traffic safety and stability.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6525201\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6525201","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Modeling and Invulnerability Analysis of Multilayer Air Traffic Network considering Altitude Layer
In this paper, a network coupling mechanism is studied to couple the air sector network, airport network, and air route network into a multilayer air network model. Then, the altitude layers are divided into three: high, medium, and low, and the arrival and departure flight procedures are also considered. By defining the association between the altitude layers and the waypoints, a multilayer air network model considering the altitude layer is constructed. Then, the line graph theory is used to redefine the nodes and edges, and the network is reconstructed to obtain a new single-layer one which is easy to calculate. Finally, a case study is carried out in Chengdu control area. The results show that the proposed model is closer to the reality, and the invulnerability performance is more referential. Besides, it also reflects the impact of altitude layers on the efficiency of airspace. The results are helpful for air traffic controllers to manage airspace better and have significance for promoting air traffic safety and stability.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.