K. A. Phan, Seol Ki Paeng, H. Chae, Joung Hun Park, Eun Seon Lee, Seong Dong Wi, Su Bin Bae, M. G. Kim, D. Yun, Woe-Yeon Kim, Sang Yeol Lee
{"title":"通用应激蛋白调控拟南芥中枢振荡基因的昼夜节律","authors":"K. A. Phan, Seol Ki Paeng, H. Chae, Joung Hun Park, Eun Seon Lee, Seong Dong Wi, Su Bin Bae, M. G. Kim, D. Yun, Woe-Yeon Kim, Sang Yeol Lee","doi":"10.1002/1873-3468.14410","DOIUrl":null,"url":null,"abstract":"Environmental stresses restrict plant growth and development and decrease crop yield. The circadian clock is associated with the ability of a plant to adapt to daily environmental fluctuations and the production and consumption of energy. Here, we investigated the role of Arabidopsis Universal Stress Protein (USP; At3g53990) in the circadian regulation of nuclear clock genes. The Arabidopsis usp knockout mutant line exhibited critically diminished circadian amplitude of the central oscillator CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) but enhanced the amplitude of TIMING OF CAB EXPRESSION 1 (TOC1). However, the expression of USP under the control of its own promoter restored the circadian timing of both genes, suggesting that USP regulates the circadian rhythm of Arabidopsis central clock genes, CCA1 and TOC1.","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Universal Stress Protein regulates the circadian rhythm of central oscillator genes in Arabidopsis\",\"authors\":\"K. A. Phan, Seol Ki Paeng, H. Chae, Joung Hun Park, Eun Seon Lee, Seong Dong Wi, Su Bin Bae, M. G. Kim, D. Yun, Woe-Yeon Kim, Sang Yeol Lee\",\"doi\":\"10.1002/1873-3468.14410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental stresses restrict plant growth and development and decrease crop yield. The circadian clock is associated with the ability of a plant to adapt to daily environmental fluctuations and the production and consumption of energy. Here, we investigated the role of Arabidopsis Universal Stress Protein (USP; At3g53990) in the circadian regulation of nuclear clock genes. The Arabidopsis usp knockout mutant line exhibited critically diminished circadian amplitude of the central oscillator CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) but enhanced the amplitude of TIMING OF CAB EXPRESSION 1 (TOC1). However, the expression of USP under the control of its own promoter restored the circadian timing of both genes, suggesting that USP regulates the circadian rhythm of Arabidopsis central clock genes, CCA1 and TOC1.\",\"PeriodicalId\":50454,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.14410\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.14410","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Universal Stress Protein regulates the circadian rhythm of central oscillator genes in Arabidopsis
Environmental stresses restrict plant growth and development and decrease crop yield. The circadian clock is associated with the ability of a plant to adapt to daily environmental fluctuations and the production and consumption of energy. Here, we investigated the role of Arabidopsis Universal Stress Protein (USP; At3g53990) in the circadian regulation of nuclear clock genes. The Arabidopsis usp knockout mutant line exhibited critically diminished circadian amplitude of the central oscillator CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) but enhanced the amplitude of TIMING OF CAB EXPRESSION 1 (TOC1). However, the expression of USP under the control of its own promoter restored the circadian timing of both genes, suggesting that USP regulates the circadian rhythm of Arabidopsis central clock genes, CCA1 and TOC1.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.