利用Hirota型的双线性形式构造复数型解

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
M. Kaplan, N. Raza
{"title":"利用Hirota型的双线性形式构造复数型解","authors":"M. Kaplan, N. Raza","doi":"10.1515/ijnsns-2020-0172","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, based on the Hirota bilinear form and the extended transformed rational function method, complexiton solutions have been found of the Hirota–Satsuma–Ito (HSI) equation and generalized Calogero–Bogoyavlenskii–Schiff equation through a direct symbolic computation with Maple. This method is the improved form of the transformed rational function method. The obtained complexiton solutions, includes trigonometric and hyperbolic trigonometric solutions, have verified utilizing Hirota bilinear forms. Also, a graphical representation of the obtained solutions is given.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"349 - 357"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Construction of complexiton-type solutions using bilinear form of Hirota-type\",\"authors\":\"M. Kaplan, N. Raza\",\"doi\":\"10.1515/ijnsns-2020-0172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, based on the Hirota bilinear form and the extended transformed rational function method, complexiton solutions have been found of the Hirota–Satsuma–Ito (HSI) equation and generalized Calogero–Bogoyavlenskii–Schiff equation through a direct symbolic computation with Maple. This method is the improved form of the transformed rational function method. The obtained complexiton solutions, includes trigonometric and hyperbolic trigonometric solutions, have verified utilizing Hirota bilinear forms. Also, a graphical representation of the obtained solutions is given.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"349 - 357\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2020-0172\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2020-0172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文基于Hirota双线性形式和扩展的变换有理函数方法,用Maple直接符号计算,得到了Hirota–Satsuma–Ito(HSI)方程和广义Calogero–Bogoyavlenskii–Schiff方程的复数解。该方法是变换有理函数方法的改进形式。所获得的复数解,包括三角和双曲三角解,已经利用Hirota双线性形式进行了验证。此外,还给出了所获得的解的图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of complexiton-type solutions using bilinear form of Hirota-type
Abstract In this paper, based on the Hirota bilinear form and the extended transformed rational function method, complexiton solutions have been found of the Hirota–Satsuma–Ito (HSI) equation and generalized Calogero–Bogoyavlenskii–Schiff equation through a direct symbolic computation with Maple. This method is the improved form of the transformed rational function method. The obtained complexiton solutions, includes trigonometric and hyperbolic trigonometric solutions, have verified utilizing Hirota bilinear forms. Also, a graphical representation of the obtained solutions is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信