关于motivic-Segal猜想

Pub Date : 2023-09-06 DOI:10.1112/topo.12311
Thomas Gregersen, John Rognes
{"title":"关于motivic-Segal猜想","authors":"Thomas Gregersen,&nbsp;John Rognes","doi":"10.1112/topo.12311","DOIUrl":null,"url":null,"abstract":"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$\\mu _\\ell$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>th roots of unity, where <math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$S_\\ell$</annotation>\n </semantics></math> and to <math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$\\mu _\\ell$</annotation>\n </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311","citationCount":"1","resultStr":"{\"title\":\"On the motivic Segal conjecture\",\"authors\":\"Thomas Gregersen,&nbsp;John Rognes\",\"doi\":\"10.1112/topo.12311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$\\\\mu _\\\\ell$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math>th roots of unity, where <math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$S_\\\\ell$</annotation>\\n </semantics></math> and to <math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$\\\\mu _\\\\ell$</annotation>\\n </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们建立了Lin定理和Gunawardena定理的动机版本,从而证实了对于单位n根的代数群μ r $\mu _\ell$的动机Segal猜想,其中,r $\ell$是任意素数。为此,我们建立了对称群S $S_\ell$和μ $S_\ell$的动机Singer结构,并引入了延迟极限Adams谱序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the motivic Segal conjecture

分享
查看原文
On the motivic Segal conjecture

We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group  μ $\mu _\ell$ of $\ell$ th roots of unity, where $\ell$ is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group  S $S_\ell$ and to  μ $\mu _\ell$ , and introduce a delayed limit Adams spectral sequence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信