{"title":"关于motivic-Segal猜想","authors":"Thomas Gregersen, John Rognes","doi":"10.1112/topo.12311","DOIUrl":null,"url":null,"abstract":"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$\\mu _\\ell$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>th roots of unity, where <math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$S_\\ell$</annotation>\n </semantics></math> and to <math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$\\mu _\\ell$</annotation>\n </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311","citationCount":"1","resultStr":"{\"title\":\"On the motivic Segal conjecture\",\"authors\":\"Thomas Gregersen, John Rognes\",\"doi\":\"10.1112/topo.12311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$\\\\mu _\\\\ell$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math>th roots of unity, where <math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$S_\\\\ell$</annotation>\\n </semantics></math> and to <math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$\\\\mu _\\\\ell$</annotation>\\n </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们建立了Lin定理和Gunawardena定理的动机版本,从而证实了对于单位n根的代数群μ r $\mu _\ell$的动机Segal猜想,其中,r $\ell$是任意素数。为此,我们建立了对称群S $S_\ell$和μ $S_\ell$的动机Singer结构,并引入了延迟极限Adams谱序列。
We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group of th roots of unity, where is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group and to , and introduce a delayed limit Adams spectral sequence.