Sima——一个用于真实的大规模个人级数据生成的开源模拟框架

Q3 Social Sciences
S. Tikka, Jussi Hakanen, Mirka Saarela, J. Karvanen
{"title":"Sima——一个用于真实的大规模个人级数据生成的开源模拟框架","authors":"S. Tikka, Jussi Hakanen, Mirka Saarela, J. Karvanen","doi":"10.34196/ijm.00240","DOIUrl":null,"url":null,"abstract":"We propose a framework for realistic data generation and the simulation of complex systems and demonstrate its capabilities in a health domain example. The main use cases of the framework are predicting the development of variables of interest, evaluating the impact of interventions and policy decisions, and supporting statistical method development. We present the fundamentals of the framework by using rigorous mathematical definitions. The framework supports calibration to a real population as well as various manipulations and data collection processes. The freely available opensource implementation in R embraces efficient data structures, parallel computing, and fast random number generation, hence ensuring reproducibility and scalability. With the framework, it is possible to run dailylevel simulations for populations of millions of individuals for decades of simulated time. An example using the occurrence of stroke, type 2 diabetes, and mortality illustrates the usage of the framework in the Finnish context. In the example, we demonstrate the data collection functionality by studying the impact of nonparticipation on the estimated risk models and interventions related to controlling excessive salt consumption. DOI: https:// doi. org/ 10. 34196/ ijm. 00240","PeriodicalId":37916,"journal":{"name":"International Journal of Microsimulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sima – an Open-source Simulation Framework for Realistic Large-scale Individual-level Data Generation\",\"authors\":\"S. Tikka, Jussi Hakanen, Mirka Saarela, J. Karvanen\",\"doi\":\"10.34196/ijm.00240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework for realistic data generation and the simulation of complex systems and demonstrate its capabilities in a health domain example. The main use cases of the framework are predicting the development of variables of interest, evaluating the impact of interventions and policy decisions, and supporting statistical method development. We present the fundamentals of the framework by using rigorous mathematical definitions. The framework supports calibration to a real population as well as various manipulations and data collection processes. The freely available opensource implementation in R embraces efficient data structures, parallel computing, and fast random number generation, hence ensuring reproducibility and scalability. With the framework, it is possible to run dailylevel simulations for populations of millions of individuals for decades of simulated time. An example using the occurrence of stroke, type 2 diabetes, and mortality illustrates the usage of the framework in the Finnish context. In the example, we demonstrate the data collection functionality by studying the impact of nonparticipation on the estimated risk models and interventions related to controlling excessive salt consumption. DOI: https:// doi. org/ 10. 34196/ ijm. 00240\",\"PeriodicalId\":37916,\"journal\":{\"name\":\"International Journal of Microsimulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microsimulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34196/ijm.00240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microsimulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34196/ijm.00240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个用于真实数据生成和复杂系统模拟的框架,并在健康领域示例中展示了其功能。该框架的主要用例是预测感兴趣的变量的发展,评估干预措施和政策决策的影响,以及支持统计方法的发展。我们通过使用严格的数学定义来介绍框架的基本原理。该框架支持对真实人口的校准以及各种操作和数据收集过程。R中免费提供的开源实现包括高效的数据结构、并行计算和快速随机数生成,从而确保了可再现性和可扩展性。有了这个框架,就有可能在几十年的模拟时间内对数百万个体的种群进行日常模拟。一个使用中风、2型糖尿病和死亡率的例子说明了该框架在芬兰背景下的使用。在这个例子中,我们通过研究不参与对估计风险模型的影响以及与控制过量盐消费相关的干预措施来展示数据收集功能。DOI:https://DOI。org/10。34196/ijm。00240
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sima – an Open-source Simulation Framework for Realistic Large-scale Individual-level Data Generation
We propose a framework for realistic data generation and the simulation of complex systems and demonstrate its capabilities in a health domain example. The main use cases of the framework are predicting the development of variables of interest, evaluating the impact of interventions and policy decisions, and supporting statistical method development. We present the fundamentals of the framework by using rigorous mathematical definitions. The framework supports calibration to a real population as well as various manipulations and data collection processes. The freely available opensource implementation in R embraces efficient data structures, parallel computing, and fast random number generation, hence ensuring reproducibility and scalability. With the framework, it is possible to run dailylevel simulations for populations of millions of individuals for decades of simulated time. An example using the occurrence of stroke, type 2 diabetes, and mortality illustrates the usage of the framework in the Finnish context. In the example, we demonstrate the data collection functionality by studying the impact of nonparticipation on the estimated risk models and interventions related to controlling excessive salt consumption. DOI: https:// doi. org/ 10. 34196/ ijm. 00240
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Microsimulation
International Journal of Microsimulation Mathematics-Modeling and Simulation
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: The IJM covers research in all aspects of microsimulation modelling. It publishes high quality contributions making use of microsimulation models to address specific research questions in all scientific areas, as well as methodological and technical issues. IJM concern: the description, validation, benchmarking and replication of microsimulation models; results coming from microsimulation models, in particular policy evaluation and counterfactual analysis; technical or methodological aspect of microsimulation modelling; reviews of models and results, as well as of technical or methodological issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信