摘要IA09:MDS的表观基因组景观

IF 11.5 Q1 HEMATOLOGY
M. Figueroa
{"title":"摘要IA09:MDS的表观基因组景观","authors":"M. Figueroa","doi":"10.1158/2643-3249.aml23-ia09","DOIUrl":null,"url":null,"abstract":"\n While significant progress has been made to understand the genetic landscape of MDS, less is known about the epigenetic makeup of this disease and how this may impact biology and response to azacitidine (AZA). To address this, we performed genomic, epigenomic and transcriptomic analysis on CD34+ cells from a multicenter cohort of 94 intermediate or higher risk MDS patients treated with AZA who had documented responses. DNA methylation (DNAme) by ERRBS, gene expression (GE) by RNA-seq, mutational profiling, and detailed clinical, cytogenetic and laboratory data were documented. Supervised and unsupervised analyses revealed that aberrant DNAme in MDS is not distributed randomly but rather is highly correlated with disease phenotypes, capturing clinically relevant heterogeneity, beyond what is identified by methodologies used in the past that focused solely on promoter regions. Moreover, this epigenetic information can be harnessed for the development of robust biomarkers predictive of AZA response and integrative approaches combining GE and DNAme data can further improve the predictive performance of these biomarkers, with an AUC score=0.92.\n Citation Format: Maria E. Figueroa. Epigenomic landscapes of MDS [abstract]. In: Proceedings of the AACR Special Conference: Acute Myeloid Leukemia and Myelodysplastic Syndrome; 2023 Jan 23-25; Austin, TX. Philadelphia (PA): AACR; Blood Cancer Discov 2023;4(3_Suppl):Abstract nr IA09.","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract IA09: Epigenomic landscapes of MDS\",\"authors\":\"M. Figueroa\",\"doi\":\"10.1158/2643-3249.aml23-ia09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While significant progress has been made to understand the genetic landscape of MDS, less is known about the epigenetic makeup of this disease and how this may impact biology and response to azacitidine (AZA). To address this, we performed genomic, epigenomic and transcriptomic analysis on CD34+ cells from a multicenter cohort of 94 intermediate or higher risk MDS patients treated with AZA who had documented responses. DNA methylation (DNAme) by ERRBS, gene expression (GE) by RNA-seq, mutational profiling, and detailed clinical, cytogenetic and laboratory data were documented. Supervised and unsupervised analyses revealed that aberrant DNAme in MDS is not distributed randomly but rather is highly correlated with disease phenotypes, capturing clinically relevant heterogeneity, beyond what is identified by methodologies used in the past that focused solely on promoter regions. Moreover, this epigenetic information can be harnessed for the development of robust biomarkers predictive of AZA response and integrative approaches combining GE and DNAme data can further improve the predictive performance of these biomarkers, with an AUC score=0.92.\\n Citation Format: Maria E. Figueroa. Epigenomic landscapes of MDS [abstract]. In: Proceedings of the AACR Special Conference: Acute Myeloid Leukemia and Myelodysplastic Syndrome; 2023 Jan 23-25; Austin, TX. Philadelphia (PA): AACR; Blood Cancer Discov 2023;4(3_Suppl):Abstract nr IA09.\",\"PeriodicalId\":29944,\"journal\":{\"name\":\"Blood Cancer Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Cancer Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2643-3249.aml23-ia09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3249.aml23-ia09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然在了解MDS的遗传格局方面取得了重大进展,但对这种疾病的表观遗传组成以及它如何影响生物学和对阿扎胞苷(AZA)的反应知之甚少。为了解决这个问题,我们对94名接受AZA治疗的中度或高风险MDS患者的CD34+细胞进行了基因组、表观基因组和转录组分析。ERRBS检测DNA甲基化(DNAme)、RNA-seq检测基因表达(GE)、突变谱分析以及详细的临床、细胞遗传学和实验室数据均被记录下来。监督和非监督分析显示,MDS中的异常DNAme不是随机分布的,而是与疾病表型高度相关,捕获临床相关的异质性,超出了过去仅关注启动子区域的方法所确定的。此外,这种表观遗传信息可以用于开发预测AZA反应的强大生物标志物,并且结合GE和DNAme数据的综合方法可以进一步提高这些生物标志物的预测性能,AUC评分为0.92。引用格式:Maria E. Figueroa。MDS的表观基因组景观[摘要]。摘自:AACR特别会议论文集:急性髓性白血病和骨髓增生异常综合征;2023年1月23-25日;费城(PA): AACR;血癌发现[j]; 2009;4(3 -增刊):摘要/ Abstract
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract IA09: Epigenomic landscapes of MDS
While significant progress has been made to understand the genetic landscape of MDS, less is known about the epigenetic makeup of this disease and how this may impact biology and response to azacitidine (AZA). To address this, we performed genomic, epigenomic and transcriptomic analysis on CD34+ cells from a multicenter cohort of 94 intermediate or higher risk MDS patients treated with AZA who had documented responses. DNA methylation (DNAme) by ERRBS, gene expression (GE) by RNA-seq, mutational profiling, and detailed clinical, cytogenetic and laboratory data were documented. Supervised and unsupervised analyses revealed that aberrant DNAme in MDS is not distributed randomly but rather is highly correlated with disease phenotypes, capturing clinically relevant heterogeneity, beyond what is identified by methodologies used in the past that focused solely on promoter regions. Moreover, this epigenetic information can be harnessed for the development of robust biomarkers predictive of AZA response and integrative approaches combining GE and DNAme data can further improve the predictive performance of these biomarkers, with an AUC score=0.92. Citation Format: Maria E. Figueroa. Epigenomic landscapes of MDS [abstract]. In: Proceedings of the AACR Special Conference: Acute Myeloid Leukemia and Myelodysplastic Syndrome; 2023 Jan 23-25; Austin, TX. Philadelphia (PA): AACR; Blood Cancer Discov 2023;4(3_Suppl):Abstract nr IA09.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
1.80%
发文量
139
期刊介绍: The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes. The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence. Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信