贡献分析中的因果索赔

IF 0.2 Q4 SOCIAL SCIENCES, INTERDISCIPLINARY
M. Palenberg
{"title":"贡献分析中的因果索赔","authors":"M. Palenberg","doi":"10.3138/cjpe.75428","DOIUrl":null,"url":null,"abstract":"This article is a tribute to John Mayne’s work on Contribution Analysis. It focuses on the causal claims Contribution Analysis aims to address, and on how these have evolved since the approach was first published by John in 1999. It first sets out four types of causality with relevance for Contribution Analysis: counterfactual, generative, INUS, and probabilistic causation. It then describes how John integrated the INUS condition and probabilistic elements into the Contribution Analysis approach, followed by how John’s thinking evolved regarding the question of whether the approach could—and should—also address counterfactual questions. The article concludes with observations on how Contribution Analysis can flexibly integrate elements from different causality types.","PeriodicalId":43924,"journal":{"name":"Canadian Journal of Program Evaluation","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Causal Claims in Contribution Analysis\",\"authors\":\"M. Palenberg\",\"doi\":\"10.3138/cjpe.75428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is a tribute to John Mayne’s work on Contribution Analysis. It focuses on the causal claims Contribution Analysis aims to address, and on how these have evolved since the approach was first published by John in 1999. It first sets out four types of causality with relevance for Contribution Analysis: counterfactual, generative, INUS, and probabilistic causation. It then describes how John integrated the INUS condition and probabilistic elements into the Contribution Analysis approach, followed by how John’s thinking evolved regarding the question of whether the approach could—and should—also address counterfactual questions. The article concludes with observations on how Contribution Analysis can flexibly integrate elements from different causality types.\",\"PeriodicalId\":43924,\"journal\":{\"name\":\"Canadian Journal of Program Evaluation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Program Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3138/cjpe.75428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Program Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3138/cjpe.75428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

这篇文章是对John Mayne关于贡献分析的工作的致敬。它侧重于贡献分析旨在解决的因果主张,以及自John于1999年首次发表该方法以来,这些主张是如何演变的。它首先列出了与贡献分析相关的四种因果关系:反事实因果关系、生成因果关系、INUS因果关系和概率因果关系。然后描述了John如何将INUS条件和概率元素整合到贡献分析方法中,接着描述了John如何思考这种方法是否可以——而且应该——也解决反事实问题。文章最后对贡献分析如何灵活地整合不同因果关系类型的要素进行了观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Claims in Contribution Analysis
This article is a tribute to John Mayne’s work on Contribution Analysis. It focuses on the causal claims Contribution Analysis aims to address, and on how these have evolved since the approach was first published by John in 1999. It first sets out four types of causality with relevance for Contribution Analysis: counterfactual, generative, INUS, and probabilistic causation. It then describes how John integrated the INUS condition and probabilistic elements into the Contribution Analysis approach, followed by how John’s thinking evolved regarding the question of whether the approach could—and should—also address counterfactual questions. The article concludes with observations on how Contribution Analysis can flexibly integrate elements from different causality types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Program Evaluation
Canadian Journal of Program Evaluation SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.60
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信