Fabian Wagle , Gerd Steinle-Neumann , Nico de Koker
{"title":"行星核条件下液态铁轻元素合金的电阻率饱和度","authors":"Fabian Wagle , Gerd Steinle-Neumann , Nico de Koker","doi":"10.1016/j.crte.2018.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>We present a comprehensive analysis of electrical resistivity for liquid Fe–Si, Fe–S, and Fe–O alloys from first principles computations, covering the pressure/temperature conditions and major light element candidates inside the cores of terrestrial planets. By fitting optical conductivity with the Drude formula, we explicitly calculate the effective electron mean free path, and show that it becomes comparable to the interatomic distance for high densities and Si/S concentrations (Ioffe–Regel criterion). In approaching the Ioffe–Regel criterion, the temperature coefficient of resistivity decreases with compression for all compositions, eventually vanishes (Fe–Si), or even changes sign (Fe–S). Differences in resistivity and the degree of saturation between the iron alloys studied are explained in terms of iron–light element coordination numbers and their density dependence. Due to competing temperature and pressure effects, resistivity profiles along proposed core adiabats exhibit a small negative pressure gradient.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.05.002","citationCount":"20","resultStr":"{\"title\":\"Resistivity saturation in liquid iron–light-element alloys at conditions of planetary cores from first principles computations\",\"authors\":\"Fabian Wagle , Gerd Steinle-Neumann , Nico de Koker\",\"doi\":\"10.1016/j.crte.2018.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a comprehensive analysis of electrical resistivity for liquid Fe–Si, Fe–S, and Fe–O alloys from first principles computations, covering the pressure/temperature conditions and major light element candidates inside the cores of terrestrial planets. By fitting optical conductivity with the Drude formula, we explicitly calculate the effective electron mean free path, and show that it becomes comparable to the interatomic distance for high densities and Si/S concentrations (Ioffe–Regel criterion). In approaching the Ioffe–Regel criterion, the temperature coefficient of resistivity decreases with compression for all compositions, eventually vanishes (Fe–Si), or even changes sign (Fe–S). Differences in resistivity and the degree of saturation between the iron alloys studied are explained in terms of iron–light element coordination numbers and their density dependence. Due to competing temperature and pressure effects, resistivity profiles along proposed core adiabats exhibit a small negative pressure gradient.</p></div>\",\"PeriodicalId\":50651,\"journal\":{\"name\":\"Comptes Rendus Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crte.2018.05.002\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631071318300555\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071318300555","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Resistivity saturation in liquid iron–light-element alloys at conditions of planetary cores from first principles computations
We present a comprehensive analysis of electrical resistivity for liquid Fe–Si, Fe–S, and Fe–O alloys from first principles computations, covering the pressure/temperature conditions and major light element candidates inside the cores of terrestrial planets. By fitting optical conductivity with the Drude formula, we explicitly calculate the effective electron mean free path, and show that it becomes comparable to the interatomic distance for high densities and Si/S concentrations (Ioffe–Regel criterion). In approaching the Ioffe–Regel criterion, the temperature coefficient of resistivity decreases with compression for all compositions, eventually vanishes (Fe–Si), or even changes sign (Fe–S). Differences in resistivity and the degree of saturation between the iron alloys studied are explained in terms of iron–light element coordination numbers and their density dependence. Due to competing temperature and pressure effects, resistivity profiles along proposed core adiabats exhibit a small negative pressure gradient.
期刊介绍:
Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community.
It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.