{"title":"鲁棒立体视觉里程计:基于三种主要假设生成器的随机样本一致性算法的比较","authors":"Guangzhi Guo, Zuoxiao Dai, Yuanfeng Dai","doi":"10.1017/S0373463322000236","DOIUrl":null,"url":null,"abstract":"Abstract Almost all robust stereo visual odometry work uses the random sample consensus (RANSAC) algorithm for model estimation with the existence of noise and outliers. To date, there have been few comparative studies to evaluate the performance of RANSAC algorithms based on different hypothesis generators. In this work, we analyse and compare three popular and efficient RANSAC schemes. They mainly differ in using the two-dimensional (2-D) data points measured directly and the three-dimensional (3-D) data points inferred through triangulation. This comparison presents several quantitative experiments intended for comparing the accuracy, robustness and efficiency of each scheme under varying levels of noise and different percentages of outlier conditions. The results suggest that in the presence of noise and outliers, the perspective-three-point RANSAC provides more accurate and robust pose estimates. However, in the absence of noise, the iterative closest point RANSAC obtains better results regardless of the percentage of outliers. Efficiency, in terms of the number of RANSAC iterations, is found in that the relative speed of the perspective-three-point RANSAC becomes superior under low noise levels and low percentages of outlier conditions. Otherwise, the iterative closest-point RANSAC may be computationally more efficient.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1298 - 1309"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust stereo visual odometry: A comparison of random sample consensus algorithms based on three major hypothesis generators\",\"authors\":\"Guangzhi Guo, Zuoxiao Dai, Yuanfeng Dai\",\"doi\":\"10.1017/S0373463322000236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Almost all robust stereo visual odometry work uses the random sample consensus (RANSAC) algorithm for model estimation with the existence of noise and outliers. To date, there have been few comparative studies to evaluate the performance of RANSAC algorithms based on different hypothesis generators. In this work, we analyse and compare three popular and efficient RANSAC schemes. They mainly differ in using the two-dimensional (2-D) data points measured directly and the three-dimensional (3-D) data points inferred through triangulation. This comparison presents several quantitative experiments intended for comparing the accuracy, robustness and efficiency of each scheme under varying levels of noise and different percentages of outlier conditions. The results suggest that in the presence of noise and outliers, the perspective-three-point RANSAC provides more accurate and robust pose estimates. However, in the absence of noise, the iterative closest point RANSAC obtains better results regardless of the percentage of outliers. Efficiency, in terms of the number of RANSAC iterations, is found in that the relative speed of the perspective-three-point RANSAC becomes superior under low noise levels and low percentages of outlier conditions. Otherwise, the iterative closest-point RANSAC may be computationally more efficient.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"75 1\",\"pages\":\"1298 - 1309\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000236\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Robust stereo visual odometry: A comparison of random sample consensus algorithms based on three major hypothesis generators
Abstract Almost all robust stereo visual odometry work uses the random sample consensus (RANSAC) algorithm for model estimation with the existence of noise and outliers. To date, there have been few comparative studies to evaluate the performance of RANSAC algorithms based on different hypothesis generators. In this work, we analyse and compare three popular and efficient RANSAC schemes. They mainly differ in using the two-dimensional (2-D) data points measured directly and the three-dimensional (3-D) data points inferred through triangulation. This comparison presents several quantitative experiments intended for comparing the accuracy, robustness and efficiency of each scheme under varying levels of noise and different percentages of outlier conditions. The results suggest that in the presence of noise and outliers, the perspective-three-point RANSAC provides more accurate and robust pose estimates. However, in the absence of noise, the iterative closest point RANSAC obtains better results regardless of the percentage of outliers. Efficiency, in terms of the number of RANSAC iterations, is found in that the relative speed of the perspective-three-point RANSAC becomes superior under low noise levels and low percentages of outlier conditions. Otherwise, the iterative closest-point RANSAC may be computationally more efficient.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.