使用机器学习的基于twitter的灾难响应

Q4 Social Sciences
Rabindra Lamsal, T. Kumar
{"title":"使用机器学习的基于twitter的灾难响应","authors":"Rabindra Lamsal, T. Kumar","doi":"10.4018/ijsesd.320650","DOIUrl":null,"url":null,"abstract":"Twitter, a microblogging platform, receives real-time information via informal conversations, and it has, accordingly, become the main source of data for research studies based on emergency situational awareness. Millions of tweets are posted on Twitter every day, and during disasters, the frequency of tweets relating to an on-going crisis event grows exponentially. This unprecedented increase in the number of tweets during disasters needs to be monitored, identified, processed, and analyzed so that necessary measures can be taken at the earliest to reduce the loss or damage during emergencies. However, due to large voluminous data being available during crisis hours, it is almost impossible for a human to perform these tasks in real time. In this regard, a semi-automated AI-based disaster response system for Twitter data is proposed. The proposed disaster response system would be capable of extracting essential situational awareness information related to a disaster and would also be capable of sketching tentative area of critically affected population.","PeriodicalId":38556,"journal":{"name":"International Journal of Social Ecology and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twitter-Based Disaster Response Using Machine Learning\",\"authors\":\"Rabindra Lamsal, T. Kumar\",\"doi\":\"10.4018/ijsesd.320650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter, a microblogging platform, receives real-time information via informal conversations, and it has, accordingly, become the main source of data for research studies based on emergency situational awareness. Millions of tweets are posted on Twitter every day, and during disasters, the frequency of tweets relating to an on-going crisis event grows exponentially. This unprecedented increase in the number of tweets during disasters needs to be monitored, identified, processed, and analyzed so that necessary measures can be taken at the earliest to reduce the loss or damage during emergencies. However, due to large voluminous data being available during crisis hours, it is almost impossible for a human to perform these tasks in real time. In this regard, a semi-automated AI-based disaster response system for Twitter data is proposed. The proposed disaster response system would be capable of extracting essential situational awareness information related to a disaster and would also be capable of sketching tentative area of critically affected population.\",\"PeriodicalId\":38556,\"journal\":{\"name\":\"International Journal of Social Ecology and Sustainable Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Ecology and Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsesd.320650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Ecology and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsesd.320650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

微博平台Twitter通过非正式对话获取实时信息,因此成为基于紧急态势感知的研究的主要数据来源。Twitter上每天发布数百万条推文,在灾难期间,与正在进行的危机事件相关的推文频率呈指数级增长。灾害期间推文数量的空前增长需要进行监测、识别、处理和分析,以便尽早采取必要措施,减少紧急情况下的损失或损害。然而,由于在危机时刻有大量的数据可用,人类几乎不可能实时执行这些任务。为此,提出了一种基于人工智能的半自动化Twitter数据灾难响应系统。拟议的灾害反应系统将能够提取与灾害有关的基本态势感知信息,并能够勾勒出受严重影响人口的暂定地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter-Based Disaster Response Using Machine Learning
Twitter, a microblogging platform, receives real-time information via informal conversations, and it has, accordingly, become the main source of data for research studies based on emergency situational awareness. Millions of tweets are posted on Twitter every day, and during disasters, the frequency of tweets relating to an on-going crisis event grows exponentially. This unprecedented increase in the number of tweets during disasters needs to be monitored, identified, processed, and analyzed so that necessary measures can be taken at the earliest to reduce the loss or damage during emergencies. However, due to large voluminous data being available during crisis hours, it is almost impossible for a human to perform these tasks in real time. In this regard, a semi-automated AI-based disaster response system for Twitter data is proposed. The proposed disaster response system would be capable of extracting essential situational awareness information related to a disaster and would also be capable of sketching tentative area of critically affected population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
196
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信