四夸克中的旋转和振动

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Amir Jalili, J. Segovia, Feng Pan, Yan-An Luo
{"title":"四夸克中的旋转和振动","authors":"Amir Jalili,&nbsp;J. Segovia,&nbsp;Feng Pan,&nbsp;Yan-An Luo","doi":"10.1007/s00601-023-01847-4","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach is introduced for obtaining precise solutions of the pairing Hamiltonian for tetraquarks, which utilizes an algebraic technique in infinite dimensions. The parameters involved in the transition phase are calibrated based on potential tetraquark candidates derived from phenomenology. Our investigation shows that the rotation and vibration transitional theory delivers a reasonable agreement with other works for heavy tetraquarks compared to other methods. To illustrate the concept, we compute the spectra of several tetraquarks, namely charm, bottom, bottom–charm and open charm and bottom systems, and contrast them with those of other particles.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-023-01847-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Rotation and Vibration in Tetraquarks\",\"authors\":\"Amir Jalili,&nbsp;J. Segovia,&nbsp;Feng Pan,&nbsp;Yan-An Luo\",\"doi\":\"10.1007/s00601-023-01847-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel approach is introduced for obtaining precise solutions of the pairing Hamiltonian for tetraquarks, which utilizes an algebraic technique in infinite dimensions. The parameters involved in the transition phase are calibrated based on potential tetraquark candidates derived from phenomenology. Our investigation shows that the rotation and vibration transitional theory delivers a reasonable agreement with other works for heavy tetraquarks compared to other methods. To illustrate the concept, we compute the spectra of several tetraquarks, namely charm, bottom, bottom–charm and open charm and bottom systems, and contrast them with those of other particles.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00601-023-01847-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-023-01847-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-023-01847-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用无限维代数技术求四夸克配对哈密顿量精确解的新方法。基于现象学衍生的潜在四夸克候选者,对过渡阶段所涉及的参数进行了校准。我们的研究表明,与其他方法相比,旋转和振动过渡理论与其他方法在重四夸克上的研究结果有较好的一致性。为了说明这一概念,我们计算了几种四夸克的谱,即粲、底、底-粲、开粲和底体系,并将它们与其他粒子的谱进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rotation and Vibration in Tetraquarks

Rotation and Vibration in Tetraquarks

A novel approach is introduced for obtaining precise solutions of the pairing Hamiltonian for tetraquarks, which utilizes an algebraic technique in infinite dimensions. The parameters involved in the transition phase are calibrated based on potential tetraquark candidates derived from phenomenology. Our investigation shows that the rotation and vibration transitional theory delivers a reasonable agreement with other works for heavy tetraquarks compared to other methods. To illustrate the concept, we compute the spectra of several tetraquarks, namely charm, bottom, bottom–charm and open charm and bottom systems, and contrast them with those of other particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信