用于生物医学应用的冰模板仿生材料的制备

Smart medicine Pub Date : 2023-07-05 eCollection Date: 2023-08-01 DOI:10.1002/SMMD.20230017
Xiang Lin, Lu Fan, Li Wang, Anne M Filppula, Yunru Yu, Hongbo Zhang
{"title":"用于生物医学应用的冰模板仿生材料的制备","authors":"Xiang Lin, Lu Fan, Li Wang, Anne M Filppula, Yunru Yu, Hongbo Zhang","doi":"10.1002/SMMD.20230017","DOIUrl":null,"url":null,"abstract":"<p><p>The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20230017"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabricating biomimetic materials with ice-templating for biomedical applications.\",\"authors\":\"Xiang Lin, Lu Fan, Li Wang, Anne M Filppula, Yunru Yu, Hongbo Zhang\",\"doi\":\"10.1002/SMMD.20230017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.</p>\",\"PeriodicalId\":74816,\"journal\":{\"name\":\"Smart medicine\",\"volume\":\" \",\"pages\":\"e20230017\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/SMMD.20230017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20230017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞和组织的适当组织对生物体的功能发挥至关重要。为了创造出模仿自然结构的材料,研究人员已经开发出了图案、模板和印刷等技术。尽管这些技术具有一些优点,但这些过程仍然复杂,耗时且成本高。为了更好地模拟已经进化了数百万年的具有微/纳米结构的天然材料,冰模板的使用已经成为一种更有效地生产仿生材料的有前途的方法。本文探讨了生产传统仿生结构生物材料的历史方法,并深入研究了冰模板方法的基本原理及其在仿生材料制造中的各种应用。它还讨论了通过冰模板创建的仿生材料的最新生物医学用途,包括多孔微载体,组织工程支架和智能材料。最后,分析了当前冰模板技术面临的挑战和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabricating biomimetic materials with ice-templating for biomedical applications.

The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信