有机锌试剂在连续流化学中的应用:根岸耦合

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Roop Varghese Rubert, Rony Rajan Paul
{"title":"有机锌试剂在连续流化学中的应用:根岸耦合","authors":"Roop Varghese Rubert,&nbsp;Rony Rajan Paul","doi":"10.1007/s41981-022-00253-x","DOIUrl":null,"url":null,"abstract":"<div><p>The design and implementation of flow technique helps organic chemists to resolve numerous challenges that are encountered during various catalytic reactions. Flow technologies, which offer solutions for technical and/or chemical issues, have gained popularity over the last two decades in the field of organic chemistry. The selectivity, efficiency, and safety of the entire process has been accelerated by flow reactors as they improve mass and heat transfer, speeds up the mixing of the reaction, and they offer exact control of the reaction parameters. This review mainly describes the utilization of flow chemistry in reactions involving organiozinc reagent, particularly Negishi coupling. The Negishi coupling of organozinc reagent is a valuable tool for the formation of C-C bond with functional group tolerance and are used extensively in total synthesis. This review also portrays a comparative study of organozinc reagents prepared using different procedures. A study of the effect of different catalysts over the same reaction is also carried out. An overview of different flow techniques that are employed has also been incorporated.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 3","pages":"217 - 246"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The applications of organozinc reagents in continuous flow chemistry: Negishi coupling\",\"authors\":\"Roop Varghese Rubert,&nbsp;Rony Rajan Paul\",\"doi\":\"10.1007/s41981-022-00253-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design and implementation of flow technique helps organic chemists to resolve numerous challenges that are encountered during various catalytic reactions. Flow technologies, which offer solutions for technical and/or chemical issues, have gained popularity over the last two decades in the field of organic chemistry. The selectivity, efficiency, and safety of the entire process has been accelerated by flow reactors as they improve mass and heat transfer, speeds up the mixing of the reaction, and they offer exact control of the reaction parameters. This review mainly describes the utilization of flow chemistry in reactions involving organiozinc reagent, particularly Negishi coupling. The Negishi coupling of organozinc reagent is a valuable tool for the formation of C-C bond with functional group tolerance and are used extensively in total synthesis. This review also portrays a comparative study of organozinc reagents prepared using different procedures. A study of the effect of different catalysts over the same reaction is also carried out. An overview of different flow techniques that are employed has also been incorporated.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 3\",\"pages\":\"217 - 246\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-022-00253-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-022-00253-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

流动技术的设计和实现有助于有机化学家解决在各种催化反应中遇到的许多挑战。流动技术为技术和/或化学问题提供了解决方案,在过去的二十年中在有机化学领域得到了普及。流动反应器改善了质量和传热,加速了反应的混合,并提供了对反应参数的精确控制,从而提高了整个过程的选择性、效率和安全性。本文主要介绍了流动化学在有机锌试剂反应中的应用,特别是根岸偶联反应。有机锌试剂的根岸偶联是形成具有官能团耐受性的C-C键的重要手段,在全合成中得到了广泛的应用。本文还对不同工艺制备的有机锌试剂进行了比较研究。研究了不同催化剂对同一反应的影响。本文还概述了所采用的不同流程技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The applications of organozinc reagents in continuous flow chemistry: Negishi coupling

The applications of organozinc reagents in continuous flow chemistry: Negishi coupling

The design and implementation of flow technique helps organic chemists to resolve numerous challenges that are encountered during various catalytic reactions. Flow technologies, which offer solutions for technical and/or chemical issues, have gained popularity over the last two decades in the field of organic chemistry. The selectivity, efficiency, and safety of the entire process has been accelerated by flow reactors as they improve mass and heat transfer, speeds up the mixing of the reaction, and they offer exact control of the reaction parameters. This review mainly describes the utilization of flow chemistry in reactions involving organiozinc reagent, particularly Negishi coupling. The Negishi coupling of organozinc reagent is a valuable tool for the formation of C-C bond with functional group tolerance and are used extensively in total synthesis. This review also portrays a comparative study of organozinc reagents prepared using different procedures. A study of the effect of different catalysts over the same reaction is also carried out. An overview of different flow techniques that are employed has also been incorporated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信