{"title":"回旋镖招聘:一个基于灰色多准则决策方法的智能再招聘模型","authors":"Mohidul Alam Mallick, S. Mukhopadhyay","doi":"10.1108/jgoss-08-2022-0093","DOIUrl":null,"url":null,"abstract":"\nPurpose\nStaffing is one of the most influential human resource (HR) activities and is the primary method of hiring and retaining human resources. Among staffing’s several activities, recruitment and selection are one of the most crucial activities. It is possible to rehire former firm employees using the talent management strategy known as “boomerang recruitment”. The boomerang recruitment trend has tremendously grown because many employees who believe they are qualified for the position now wish to return to their old employers. According to data, boomerang employees can be 50% less expensive than conventional ways of hiring. The purpose of this study is to identify the generic critical factors that play a role in the boomerang hiring process based on the literature review. Next, the objective is to determine the relative weight of each of these factors, rank the candidates, and develop a decision-making model for boomerang recruitment.\n\n\nDesign/methodology/approach\nThis paper focuses on the grey-based multicriteria decision-making (MCDM) methodology for recruiting some of the best candidates out of a few who worked for the organization earlier. The grey theory yields adequate findings despite sparse data or significant factor variability. Like MCDM, the grey methods also incorporate experts' opinions for evaluation. Furthermore, sensitivity analysis is also done to show the robustness of the suggested methodology.\n\n\nFindings\nSeven (7) recruitment criteria for boomerang employees were identified and validated based on the opinions of industry experts. Using these recruitment criteria, three candidates emerged as the top three and created a pool out of six. In addition, this study finds that Criteria 1 (C1), the employee's past performance, is the most significant predictor among all other criteria in boomerang hiring.\n\n\nResearch limitations/implications\nSince the weights and ratings of attributes and alternatives in MCDM methods are primarily based on expert opinion, a significant difference in expert opinions (caused by differences in their knowledge and qualifications) may impact the values of the grey possibility degree. However, enough attention was taken while selecting the experts for this study regarding their expertise and subject experience.\n\n\nPractical implications\nThe proposed method provides the groundwork for HR management. Managers confronted with recruiting employees who want to rejoin may use this model. According to experts, each attribute is not only generic but also crucial. In addition, because these factors apply to all sectors, they are industry-neutral.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this is the first study to apply a grey-based MCDM methodology to the boomerang recruitment model. This study also uses an example to explain the computational intricacies associated with such methods. The proposed system may be reproduced for boomerang recruiting in any sector because the framework is universal and replicable. Furthermore, the framework is expandable to include new criteria for different work.\n","PeriodicalId":43346,"journal":{"name":"Journal of Global Operations and Strategic Sourcing","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boomerang recruitment: an intelligent model for rehiring using a grey-based multicriteria decision-making methodology\",\"authors\":\"Mohidul Alam Mallick, S. Mukhopadhyay\",\"doi\":\"10.1108/jgoss-08-2022-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nStaffing is one of the most influential human resource (HR) activities and is the primary method of hiring and retaining human resources. Among staffing’s several activities, recruitment and selection are one of the most crucial activities. It is possible to rehire former firm employees using the talent management strategy known as “boomerang recruitment”. The boomerang recruitment trend has tremendously grown because many employees who believe they are qualified for the position now wish to return to their old employers. According to data, boomerang employees can be 50% less expensive than conventional ways of hiring. The purpose of this study is to identify the generic critical factors that play a role in the boomerang hiring process based on the literature review. Next, the objective is to determine the relative weight of each of these factors, rank the candidates, and develop a decision-making model for boomerang recruitment.\\n\\n\\nDesign/methodology/approach\\nThis paper focuses on the grey-based multicriteria decision-making (MCDM) methodology for recruiting some of the best candidates out of a few who worked for the organization earlier. The grey theory yields adequate findings despite sparse data or significant factor variability. Like MCDM, the grey methods also incorporate experts' opinions for evaluation. Furthermore, sensitivity analysis is also done to show the robustness of the suggested methodology.\\n\\n\\nFindings\\nSeven (7) recruitment criteria for boomerang employees were identified and validated based on the opinions of industry experts. Using these recruitment criteria, three candidates emerged as the top three and created a pool out of six. In addition, this study finds that Criteria 1 (C1), the employee's past performance, is the most significant predictor among all other criteria in boomerang hiring.\\n\\n\\nResearch limitations/implications\\nSince the weights and ratings of attributes and alternatives in MCDM methods are primarily based on expert opinion, a significant difference in expert opinions (caused by differences in their knowledge and qualifications) may impact the values of the grey possibility degree. However, enough attention was taken while selecting the experts for this study regarding their expertise and subject experience.\\n\\n\\nPractical implications\\nThe proposed method provides the groundwork for HR management. Managers confronted with recruiting employees who want to rejoin may use this model. According to experts, each attribute is not only generic but also crucial. In addition, because these factors apply to all sectors, they are industry-neutral.\\n\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, this is the first study to apply a grey-based MCDM methodology to the boomerang recruitment model. This study also uses an example to explain the computational intricacies associated with such methods. The proposed system may be reproduced for boomerang recruiting in any sector because the framework is universal and replicable. Furthermore, the framework is expandable to include new criteria for different work.\\n\",\"PeriodicalId\":43346,\"journal\":{\"name\":\"Journal of Global Operations and Strategic Sourcing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Operations and Strategic Sourcing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jgoss-08-2022-0093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Operations and Strategic Sourcing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jgoss-08-2022-0093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Boomerang recruitment: an intelligent model for rehiring using a grey-based multicriteria decision-making methodology
Purpose
Staffing is one of the most influential human resource (HR) activities and is the primary method of hiring and retaining human resources. Among staffing’s several activities, recruitment and selection are one of the most crucial activities. It is possible to rehire former firm employees using the talent management strategy known as “boomerang recruitment”. The boomerang recruitment trend has tremendously grown because many employees who believe they are qualified for the position now wish to return to their old employers. According to data, boomerang employees can be 50% less expensive than conventional ways of hiring. The purpose of this study is to identify the generic critical factors that play a role in the boomerang hiring process based on the literature review. Next, the objective is to determine the relative weight of each of these factors, rank the candidates, and develop a decision-making model for boomerang recruitment.
Design/methodology/approach
This paper focuses on the grey-based multicriteria decision-making (MCDM) methodology for recruiting some of the best candidates out of a few who worked for the organization earlier. The grey theory yields adequate findings despite sparse data or significant factor variability. Like MCDM, the grey methods also incorporate experts' opinions for evaluation. Furthermore, sensitivity analysis is also done to show the robustness of the suggested methodology.
Findings
Seven (7) recruitment criteria for boomerang employees were identified and validated based on the opinions of industry experts. Using these recruitment criteria, three candidates emerged as the top three and created a pool out of six. In addition, this study finds that Criteria 1 (C1), the employee's past performance, is the most significant predictor among all other criteria in boomerang hiring.
Research limitations/implications
Since the weights and ratings of attributes and alternatives in MCDM methods are primarily based on expert opinion, a significant difference in expert opinions (caused by differences in their knowledge and qualifications) may impact the values of the grey possibility degree. However, enough attention was taken while selecting the experts for this study regarding their expertise and subject experience.
Practical implications
The proposed method provides the groundwork for HR management. Managers confronted with recruiting employees who want to rejoin may use this model. According to experts, each attribute is not only generic but also crucial. In addition, because these factors apply to all sectors, they are industry-neutral.
Originality/value
To the best of the authors’ knowledge, this is the first study to apply a grey-based MCDM methodology to the boomerang recruitment model. This study also uses an example to explain the computational intricacies associated with such methods. The proposed system may be reproduced for boomerang recruiting in any sector because the framework is universal and replicable. Furthermore, the framework is expandable to include new criteria for different work.
期刊介绍:
The Journal of Global Operations and Strategic Sourcing aims to foster and lead the international debate on global operations and strategic sourcing. It provides a central, authoritative and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to sourcing strategically for products, services, competences and resources on a global scale and to designing, implementing and managing the resulting global operations. Journal of Global Operations and Strategic Sourcing places a strong emphasis on applied research with relevant implications for both knowledge and practice. Also, the journal aims to facilitate the exchange of ideas and opinions on research projects and issues. As such, on top of a standard section publishing scientific articles, there will be two additional sections: "The Industry ViewPoint": in this section, industrial practitioners from around the world will be invited (max 2 contributions per issue) to present their point of view on a relevant subject area. This is intended to give the journal not just an academic focus, but a practical focus as well. In this way, we intend to reflect a trend that has characterised the past few decades, where interests and initiatives in research, academia and industry have been more and more converging to the point of collaborative relationships being a common practice. "Research Updates - Executive Summaries". In this section, researchers around the world will be given the opportunity to present their research projects in the area of global sourcing and outsourcing by means of an executive summary of their project. This will increase awareness of the on-going research projects in the area and it will attract interest from industry.