多壁碳纳米管增强聚甲基丙烯酸甲酯骨水泥的特性及体外生物活性分析以延长其在骨科中的应用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
T. V. V. Kumar, N. Shanmugapriya, S. Arun, G. Ramasubramanian
{"title":"多壁碳纳米管增强聚甲基丙烯酸甲酯骨水泥的特性及体外生物活性分析以延长其在骨科中的应用","authors":"T. V. V. Kumar, N. Shanmugapriya, S. Arun, G. Ramasubramanian","doi":"10.1155/2023/8832582","DOIUrl":null,"url":null,"abstract":"Polymethyl methacrylate (PMMA) bone cement is being used to fill voids that are created due to vertebral compression fractures. It is also a grouting medium in orthopedic joint replacement surgeries as they possess fast primary fixation to the bone. Considering the cement properties and in vitro bioactivity of bone cement is essential for cemented hip and knee joint replacement surgeries. In this study, commercial Simplex P bone cement (SPBC) is modified with carboxyl- (-COOH-) functionalized multiwalled carbon nanotubes (MWCNTs) to overcome high polymerization temperature, volumetric shrinkage, surface wettability, and in vitro bioactivity. A geometric dilution method is used to incorporate MWCNTs with the PMMA powder, which is in unequal proportions. The PMMA/MWCNT nanocomposite with different concentrations of reinforcements, such as 0.1, 0.3, 0.5, and 0.7 weight percentages, is prepared for the investigation. It was observed that the MWCNTs had a beneficial impact on PMMA bone cement (PMMA-BC) by enhancing its setting time (2.94%↑) and surface wettability (23.58%↑). Also, diminished polymerization temperature (29%↓) and volumetric shrinkage (40.9%↓) are observed for an optimum concentration of 0.7 wt. %. The bioactivity of the cement surface is validated by the in vitro bioactivity observed in simulated body fluid (SBF) through the development of primary and secondary apatite. It is concluded that the synthesized PMMA/MWCNT nanocomposites are found to have enhanced cement properties compared to PMMA-BC.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Multiwalled Carbon Nanotubes Reinforced Polymethyl Methacrylate Bone Cement’s Characteristics and In Vitro Bioactivity to Prolong Its Functionality in Orthopedic Application\",\"authors\":\"T. V. V. Kumar, N. Shanmugapriya, S. Arun, G. Ramasubramanian\",\"doi\":\"10.1155/2023/8832582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymethyl methacrylate (PMMA) bone cement is being used to fill voids that are created due to vertebral compression fractures. It is also a grouting medium in orthopedic joint replacement surgeries as they possess fast primary fixation to the bone. Considering the cement properties and in vitro bioactivity of bone cement is essential for cemented hip and knee joint replacement surgeries. In this study, commercial Simplex P bone cement (SPBC) is modified with carboxyl- (-COOH-) functionalized multiwalled carbon nanotubes (MWCNTs) to overcome high polymerization temperature, volumetric shrinkage, surface wettability, and in vitro bioactivity. A geometric dilution method is used to incorporate MWCNTs with the PMMA powder, which is in unequal proportions. The PMMA/MWCNT nanocomposite with different concentrations of reinforcements, such as 0.1, 0.3, 0.5, and 0.7 weight percentages, is prepared for the investigation. It was observed that the MWCNTs had a beneficial impact on PMMA bone cement (PMMA-BC) by enhancing its setting time (2.94%↑) and surface wettability (23.58%↑). Also, diminished polymerization temperature (29%↓) and volumetric shrinkage (40.9%↓) are observed for an optimum concentration of 0.7 wt. %. The bioactivity of the cement surface is validated by the in vitro bioactivity observed in simulated body fluid (SBF) through the development of primary and secondary apatite. It is concluded that the synthesized PMMA/MWCNT nanocomposites are found to have enhanced cement properties compared to PMMA-BC.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8832582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8832582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

聚甲基丙烯酸甲酯(PMMA)骨水泥被用于填补因脊椎压缩性骨折而产生的空隙。它也是骨科关节置换手术中的一种灌浆介质,因为它们具有对骨骼的快速初级固定。考虑骨水泥的性能和体外生物活性对于骨水泥髋关节和膝关节置换手术至关重要。在本研究中,用羧基-(-COOH-)功能化的多壁碳纳米管(MWCNTs)对商用Simplex P骨水泥(SPBC)进行改性,以克服高聚合温度、体积收缩、表面润湿性和体外生物活性。采用几何稀释法将MWCNT和比例不等的PMMA粉末结合在一起。制备了具有不同增强浓度(例如0.1、0.3、0.5和0.7重量百分比)的PMMA/MWCNT纳米复合材料用于研究。观察到MWCNTs通过提高PMMA骨水泥(PMMA-BC)的凝结时间(2.94%)对其具有有益的影响↑) 和表面润湿性(23.58%↑). 此外,聚合温度降低(29%↓) 体积收缩率(40.9%↓) 观察到最佳浓度为0.7 重量%。通过开发初级和次级磷灰石,在模拟体液(SBF)中观察到的体外生物活性验证了水泥表面的生物活性。结果表明,与PMMA-BC相比,合成的PMMA/MWCNT纳米复合材料具有增强的水泥性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Multiwalled Carbon Nanotubes Reinforced Polymethyl Methacrylate Bone Cement’s Characteristics and In Vitro Bioactivity to Prolong Its Functionality in Orthopedic Application
Polymethyl methacrylate (PMMA) bone cement is being used to fill voids that are created due to vertebral compression fractures. It is also a grouting medium in orthopedic joint replacement surgeries as they possess fast primary fixation to the bone. Considering the cement properties and in vitro bioactivity of bone cement is essential for cemented hip and knee joint replacement surgeries. In this study, commercial Simplex P bone cement (SPBC) is modified with carboxyl- (-COOH-) functionalized multiwalled carbon nanotubes (MWCNTs) to overcome high polymerization temperature, volumetric shrinkage, surface wettability, and in vitro bioactivity. A geometric dilution method is used to incorporate MWCNTs with the PMMA powder, which is in unequal proportions. The PMMA/MWCNT nanocomposite with different concentrations of reinforcements, such as 0.1, 0.3, 0.5, and 0.7 weight percentages, is prepared for the investigation. It was observed that the MWCNTs had a beneficial impact on PMMA bone cement (PMMA-BC) by enhancing its setting time (2.94%↑) and surface wettability (23.58%↑). Also, diminished polymerization temperature (29%↓) and volumetric shrinkage (40.9%↓) are observed for an optimum concentration of 0.7 wt. %. The bioactivity of the cement surface is validated by the in vitro bioactivity observed in simulated body fluid (SBF) through the development of primary and secondary apatite. It is concluded that the synthesized PMMA/MWCNT nanocomposites are found to have enhanced cement properties compared to PMMA-BC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信