O. Mata-Gutiérrez, L. Roa-Leguizamón, H. Torres-López
{"title":"曲面上无扭轮轴模空间的Hilbert格式","authors":"O. Mata-Gutiérrez, L. Roa-Leguizamón, H. Torres-López","doi":"10.1017/S0017089523000010","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point \n$x \\in X$\n to show that there exists an embedding from the Grassmannian variety \n$\\mathbb{G}(E_x,m)$\n into the moduli space of torsion-free sheaves \n$\\mathfrak{M}_{X,H}(n;\\,c_1,c_2+m)$\n which induces an injective morphism from \n$X \\times M_{X,H}(n;\\,c_1,c_2)$\n to \n$Hilb_{\\, \\mathfrak{M}_{X,H}(n;\\,c_1,c_2+m)}$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces\",\"authors\":\"O. Mata-Gutiérrez, L. Roa-Leguizamón, H. Torres-López\",\"doi\":\"10.1017/S0017089523000010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point \\n$x \\\\in X$\\n to show that there exists an embedding from the Grassmannian variety \\n$\\\\mathbb{G}(E_x,m)$\\n into the moduli space of torsion-free sheaves \\n$\\\\mathfrak{M}_{X,H}(n;\\\\,c_1,c_2+m)$\\n which induces an injective morphism from \\n$X \\\\times M_{X,H}(n;\\\\,c_1,c_2)$\\n to \\n$Hilb_{\\\\, \\\\mathfrak{M}_{X,H}(n;\\\\,c_1,c_2+m)}$\\n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089523000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces
Abstract The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point
$x \in X$
to show that there exists an embedding from the Grassmannian variety
$\mathbb{G}(E_x,m)$
into the moduli space of torsion-free sheaves
$\mathfrak{M}_{X,H}(n;\,c_1,c_2+m)$
which induces an injective morphism from
$X \times M_{X,H}(n;\,c_1,c_2)$
to
$Hilb_{\, \mathfrak{M}_{X,H}(n;\,c_1,c_2+m)}$
.