{"title":"粒状超材料:弯曲梁的响应","authors":"Holger Götz, Thorsten Pöschel","doi":"10.1007/s10035-023-01336-9","DOIUrl":null,"url":null,"abstract":"<div><p>Jammed granular matter can be considered a meta-material that behaves viscoelastic for small deformations. We characterize the elastic properties of the meta-material through the response of a simply supported bending beam consisting of jammed granular matter under weak load and quasistatic deformation.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01336-9.pdf","citationCount":"1","resultStr":"{\"title\":\"Granular meta-material: response of a bending beam\",\"authors\":\"Holger Götz, Thorsten Pöschel\",\"doi\":\"10.1007/s10035-023-01336-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Jammed granular matter can be considered a meta-material that behaves viscoelastic for small deformations. We characterize the elastic properties of the meta-material through the response of a simply supported bending beam consisting of jammed granular matter under weak load and quasistatic deformation.</p></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-023-01336-9.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01336-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01336-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Granular meta-material: response of a bending beam
Jammed granular matter can be considered a meta-material that behaves viscoelastic for small deformations. We characterize the elastic properties of the meta-material through the response of a simply supported bending beam consisting of jammed granular matter under weak load and quasistatic deformation.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.