无支架生物打印成骨和软骨系统模拟骨软骨生理学

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Erick Breathwaite, J. Weaver, Angela C Murchison, Michelle L Treadwell, J. Odanga, Jung Bok Lee
{"title":"无支架生物打印成骨和软骨系统模拟骨软骨生理学","authors":"Erick Breathwaite, J. Weaver, Angela C Murchison, Michelle L Treadwell, J. Odanga, Jung Bok Lee","doi":"10.1088/1748-605X/ab4243","DOIUrl":null,"url":null,"abstract":"Three-dimensional bioprinted culture platforms mimic the native microenvironment of tissues more accurately than two-dimensional cell cultures or animal models. Scaffold-free bioprinting eliminates many complications associated with traditional scaffold-dependent printing as well as provides better cell-to-cell interactions and long-term functionality. In this study, constructs were produced from bone marrow derived mesenchymal stem cells (BM-MSCs) using a scaffold-free bioprinter. These constructs were cultured in either osteogenic, chondrogenic, a 50:50 mixture of osteogenic and chondrogenic (‘osteo-chondro’), or BM-MSC growth medium. Osteogenic and chondrogenic differentiation capacity was determined over an 8-week culture period using histological and immunohistochemical staining and RT-qPCR (Phase I). After 6 weeks in culture, individual osteogenic and chondrogenic differentiated constructs were adhered to create a bone-cartilage interaction model. Adhered differentiated constructs were cultured for an additional 8 weeks in either chondrogenic or osteo-chondro medium to evaluate sustainability of lineage specification and transdifferentiation potential (Phase II). Constructs cultured in their respective osteogenic and/or chondrogenic medium differentiated directly into bone (model of intramembranous ossification) or cartilage. Positive histological and immunohistochemical staining for bone or cartilage identification was shown after 4 and 8 weeks in culture. Expression of osteogenesis and chondrogenesis associated genes increased between weeks 2 and 6. Adhered individual osteogenic and chondrogenic differentiated constructs sustained their differentiated phenotype when cultured in chondrogenic medium. However, adhered individual chondrogenic differentiated constructs cultured in osteo-chondro medium were converted to bone (model of metaplastic transformation). These bioprinted models of bone-cartilage interaction, intramembranous ossification, and metaplastic transformation of cartilage into bone offer a useful and promising approach for bone and cartilage tissue engineering research. Specifically, these models can be potentially used as functional tissue systems for studying osteochondral defect repair, drug discovery and response, and many other potential applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab4243","citationCount":"7","resultStr":"{\"title\":\"Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology\",\"authors\":\"Erick Breathwaite, J. Weaver, Angela C Murchison, Michelle L Treadwell, J. Odanga, Jung Bok Lee\",\"doi\":\"10.1088/1748-605X/ab4243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional bioprinted culture platforms mimic the native microenvironment of tissues more accurately than two-dimensional cell cultures or animal models. Scaffold-free bioprinting eliminates many complications associated with traditional scaffold-dependent printing as well as provides better cell-to-cell interactions and long-term functionality. In this study, constructs were produced from bone marrow derived mesenchymal stem cells (BM-MSCs) using a scaffold-free bioprinter. These constructs were cultured in either osteogenic, chondrogenic, a 50:50 mixture of osteogenic and chondrogenic (‘osteo-chondro’), or BM-MSC growth medium. Osteogenic and chondrogenic differentiation capacity was determined over an 8-week culture period using histological and immunohistochemical staining and RT-qPCR (Phase I). After 6 weeks in culture, individual osteogenic and chondrogenic differentiated constructs were adhered to create a bone-cartilage interaction model. Adhered differentiated constructs were cultured for an additional 8 weeks in either chondrogenic or osteo-chondro medium to evaluate sustainability of lineage specification and transdifferentiation potential (Phase II). Constructs cultured in their respective osteogenic and/or chondrogenic medium differentiated directly into bone (model of intramembranous ossification) or cartilage. Positive histological and immunohistochemical staining for bone or cartilage identification was shown after 4 and 8 weeks in culture. Expression of osteogenesis and chondrogenesis associated genes increased between weeks 2 and 6. Adhered individual osteogenic and chondrogenic differentiated constructs sustained their differentiated phenotype when cultured in chondrogenic medium. However, adhered individual chondrogenic differentiated constructs cultured in osteo-chondro medium were converted to bone (model of metaplastic transformation). These bioprinted models of bone-cartilage interaction, intramembranous ossification, and metaplastic transformation of cartilage into bone offer a useful and promising approach for bone and cartilage tissue engineering research. Specifically, these models can be potentially used as functional tissue systems for studying osteochondral defect repair, drug discovery and response, and many other potential applications.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab4243\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab4243\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab4243","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7

摘要

三维生物打印培养平台比二维细胞培养或动物模型更准确地模拟组织的天然微环境。无支架生物打印消除了与传统支架依赖性打印相关的许多并发症,并提供了更好的细胞间相互作用和长期功能。在这项研究中,使用无支架生物打印机从骨髓来源的间充质干细胞(BM-MSC)生产构建体。这些构建体在成骨、成软骨、成骨和软骨的50:50混合物(“steo-chondro”)或BM-MSC生长培养基中培养。在8周的培养期内,使用组织学和免疫组织化学染色以及RT-qPCR(I期)测定成骨和软骨分化能力。在培养6周后,粘附单独的成骨和软骨分化的构建体以创建骨-软骨相互作用模型。将粘附的分化构建体在软骨形成或骨软骨培养基中再培养8周,以评估谱系规范的可持续性和转分化潜力(II期)。在其各自的成骨和/或软骨培养基中培养的构建体直接分化为骨(膜内骨化模型)或软骨。在培养4周和8周后,显示骨或软骨鉴定的阳性组织学和免疫组织化学染色。成骨和软骨形成相关基因的表达在第2周至第6周之间增加。当在软骨形成培养基中培养时,粘附的单个成骨和软骨形成分化的构建体维持其分化表型。然而,在骨软骨培养基中培养的粘附的单个软骨分化构建体被转化为骨(化生转化模型)。这些骨-软骨相互作用、膜内骨化和软骨化生转化为骨的生物打印模型为骨和软骨组织工程研究提供了一种有用且有前景的方法。具体而言,这些模型可以作为功能性组织系统用于研究骨软骨缺损修复、药物发现和反应以及许多其他潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology
Three-dimensional bioprinted culture platforms mimic the native microenvironment of tissues more accurately than two-dimensional cell cultures or animal models. Scaffold-free bioprinting eliminates many complications associated with traditional scaffold-dependent printing as well as provides better cell-to-cell interactions and long-term functionality. In this study, constructs were produced from bone marrow derived mesenchymal stem cells (BM-MSCs) using a scaffold-free bioprinter. These constructs were cultured in either osteogenic, chondrogenic, a 50:50 mixture of osteogenic and chondrogenic (‘osteo-chondro’), or BM-MSC growth medium. Osteogenic and chondrogenic differentiation capacity was determined over an 8-week culture period using histological and immunohistochemical staining and RT-qPCR (Phase I). After 6 weeks in culture, individual osteogenic and chondrogenic differentiated constructs were adhered to create a bone-cartilage interaction model. Adhered differentiated constructs were cultured for an additional 8 weeks in either chondrogenic or osteo-chondro medium to evaluate sustainability of lineage specification and transdifferentiation potential (Phase II). Constructs cultured in their respective osteogenic and/or chondrogenic medium differentiated directly into bone (model of intramembranous ossification) or cartilage. Positive histological and immunohistochemical staining for bone or cartilage identification was shown after 4 and 8 weeks in culture. Expression of osteogenesis and chondrogenesis associated genes increased between weeks 2 and 6. Adhered individual osteogenic and chondrogenic differentiated constructs sustained their differentiated phenotype when cultured in chondrogenic medium. However, adhered individual chondrogenic differentiated constructs cultured in osteo-chondro medium were converted to bone (model of metaplastic transformation). These bioprinted models of bone-cartilage interaction, intramembranous ossification, and metaplastic transformation of cartilage into bone offer a useful and promising approach for bone and cartilage tissue engineering research. Specifically, these models can be potentially used as functional tissue systems for studying osteochondral defect repair, drug discovery and response, and many other potential applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信