1.2 GHz的细胞内蛋白质核磁共振光谱

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Enrico Luchinat, Letizia Barbieri, Matteo Cremonini, Lucia Banci
{"title":"1.2 GHz的细胞内蛋白质核磁共振光谱","authors":"Enrico Luchinat,&nbsp;Letizia Barbieri,&nbsp;Matteo Cremonini,&nbsp;Lucia Banci","doi":"10.1007/s10858-021-00358-w","DOIUrl":null,"url":null,"abstract":"<p>In-cell NMR spectroscopy provides precious structural and functional information on biological macromolecules in their native cellular environment at atomic resolution. However, the intrinsic low sensitivity of NMR imposes a big limitation in the applicability of the methodology. In this respect, the recently developed commercial 1.2?GHz NMR spectrometer is expected to introduce significant benefits. However, cell samples may suffer from detrimental effects at ultrahigh fields, that must be carefully evaluated. Here we show the first in-cell NMR spectra recorded at 1.2?GHz on human cells, and we compare resolution and sensitivity against those obtained at 900 and 950?MHz. To evaluate the effects of different spin relaxation rates, SOFAST-HMQC and BEST-TROSY spectra were recorded on intracellular α-synuclein and carbonic anhydrase. Major improvements are observed at 1.2?GHz when analyzing unfolded proteins, such as α-synuclein, while the TROSY scheme improves the resolution for both globular and unfolded proteins.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00358-w","citationCount":"33","resultStr":"{\"title\":\"Protein in-cell NMR spectroscopy at 1.2 GHz\",\"authors\":\"Enrico Luchinat,&nbsp;Letizia Barbieri,&nbsp;Matteo Cremonini,&nbsp;Lucia Banci\",\"doi\":\"10.1007/s10858-021-00358-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In-cell NMR spectroscopy provides precious structural and functional information on biological macromolecules in their native cellular environment at atomic resolution. However, the intrinsic low sensitivity of NMR imposes a big limitation in the applicability of the methodology. In this respect, the recently developed commercial 1.2?GHz NMR spectrometer is expected to introduce significant benefits. However, cell samples may suffer from detrimental effects at ultrahigh fields, that must be carefully evaluated. Here we show the first in-cell NMR spectra recorded at 1.2?GHz on human cells, and we compare resolution and sensitivity against those obtained at 900 and 950?MHz. To evaluate the effects of different spin relaxation rates, SOFAST-HMQC and BEST-TROSY spectra were recorded on intracellular α-synuclein and carbonic anhydrase. Major improvements are observed at 1.2?GHz when analyzing unfolded proteins, such as α-synuclein, while the TROSY scheme improves the resolution for both globular and unfolded proteins.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10858-021-00358-w\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-021-00358-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00358-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 33

摘要

细胞内核磁共振波谱在原子分辨率上提供了生物大分子在其原生细胞环境中的宝贵结构和功能信息。然而,核磁共振固有的低灵敏度限制了该方法的适用性。在这方面,最近开发的商业1.2?GHz核磁共振波谱仪有望带来显著的效益。然而,细胞样本在超高场下可能会受到有害影响,这一点必须仔细评估。这里我们展示了在1.2?在人体细胞上,我们比较了900和950兆赫的分辨率和灵敏度。为了评价不同自旋弛豫速率对细胞内α-突触核蛋白和碳酸酐酶的影响,记录了SOFAST-HMQC和BEST-TROSY光谱。在1.2?在分析未折叠蛋白(如α-synuclein)时,分辨率为GHz,而TROSY方案提高了球形和未折叠蛋白的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protein in-cell NMR spectroscopy at 1.2 GHz

Protein in-cell NMR spectroscopy at 1.2 GHz

In-cell NMR spectroscopy provides precious structural and functional information on biological macromolecules in their native cellular environment at atomic resolution. However, the intrinsic low sensitivity of NMR imposes a big limitation in the applicability of the methodology. In this respect, the recently developed commercial 1.2?GHz NMR spectrometer is expected to introduce significant benefits. However, cell samples may suffer from detrimental effects at ultrahigh fields, that must be carefully evaluated. Here we show the first in-cell NMR spectra recorded at 1.2?GHz on human cells, and we compare resolution and sensitivity against those obtained at 900 and 950?MHz. To evaluate the effects of different spin relaxation rates, SOFAST-HMQC and BEST-TROSY spectra were recorded on intracellular α-synuclein and carbonic anhydrase. Major improvements are observed at 1.2?GHz when analyzing unfolded proteins, such as α-synuclein, while the TROSY scheme improves the resolution for both globular and unfolded proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信