Ayşenur Gurgen, H. Serencam, Y. Kara, Z. Can, S. Yıldız
{"title":"基于人工神经网络和蛾焰优化算法的蜂胶乙醇提取物提取工艺优化","authors":"Ayşenur Gurgen, H. Serencam, Y. Kara, Z. Can, S. Yıldız","doi":"10.2478/jas-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the optimum values of propolis ethanol extracts parameters were determined with the use of single and multi-objective optimization procedures. The euclidean distance approach was used in the multi-objective optimization process. Firstly, propolis was extracted using water with ethanol contents 40, 50, 60, 70 and 80% for 8, 10, 12, 16, 20 and 24 h. Then, total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) activities of all extracts were determined. With the obtained data a prediction model was produced with the use of artificial neural networks (ANN), and optimization was performed using a moth-flame (MFO) algorithm. The best prediction models for the TPC and FRAP were observed in 2-5-1 and 2-5-1 network architecture with the mean absolute percentage error (MAPE) values, 5.126 and 2.451%, respectively. For maximum TPC, the extraction parameters were determined as ethanol content 57.5% and extraction time 13.56 h. To maximize FRAP, the optimized extraction parameters were ethanol content 72.03% and extraction time 18.04 h. The optimum extraction conditions for both maximum values of the studied assays were ethanol content 70.03% and extraction time 16.93 h. The study concluded that the integrated ANN and MFO algorithm system can be used in single and multi-objective optimization of extraction parameters. The established optimization model can save time, money, labor and energy.","PeriodicalId":14941,"journal":{"name":"Journal of Apicultural Science","volume":"65 1","pages":"229 - 241"},"PeriodicalIF":0.7000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Extraction Parameters of Ethanol Extracts of Propolis Samples Using Artificial Neural Network and Moth-Flame Optimization Algorithm\",\"authors\":\"Ayşenur Gurgen, H. Serencam, Y. Kara, Z. Can, S. Yıldız\",\"doi\":\"10.2478/jas-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the optimum values of propolis ethanol extracts parameters were determined with the use of single and multi-objective optimization procedures. The euclidean distance approach was used in the multi-objective optimization process. Firstly, propolis was extracted using water with ethanol contents 40, 50, 60, 70 and 80% for 8, 10, 12, 16, 20 and 24 h. Then, total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) activities of all extracts were determined. With the obtained data a prediction model was produced with the use of artificial neural networks (ANN), and optimization was performed using a moth-flame (MFO) algorithm. The best prediction models for the TPC and FRAP were observed in 2-5-1 and 2-5-1 network architecture with the mean absolute percentage error (MAPE) values, 5.126 and 2.451%, respectively. For maximum TPC, the extraction parameters were determined as ethanol content 57.5% and extraction time 13.56 h. To maximize FRAP, the optimized extraction parameters were ethanol content 72.03% and extraction time 18.04 h. The optimum extraction conditions for both maximum values of the studied assays were ethanol content 70.03% and extraction time 16.93 h. The study concluded that the integrated ANN and MFO algorithm system can be used in single and multi-objective optimization of extraction parameters. The established optimization model can save time, money, labor and energy.\",\"PeriodicalId\":14941,\"journal\":{\"name\":\"Journal of Apicultural Science\",\"volume\":\"65 1\",\"pages\":\"229 - 241\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Apicultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/jas-2021-0018\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Apicultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/jas-2021-0018","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Optimization of Extraction Parameters of Ethanol Extracts of Propolis Samples Using Artificial Neural Network and Moth-Flame Optimization Algorithm
Abstract In this study, the optimum values of propolis ethanol extracts parameters were determined with the use of single and multi-objective optimization procedures. The euclidean distance approach was used in the multi-objective optimization process. Firstly, propolis was extracted using water with ethanol contents 40, 50, 60, 70 and 80% for 8, 10, 12, 16, 20 and 24 h. Then, total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) activities of all extracts were determined. With the obtained data a prediction model was produced with the use of artificial neural networks (ANN), and optimization was performed using a moth-flame (MFO) algorithm. The best prediction models for the TPC and FRAP were observed in 2-5-1 and 2-5-1 network architecture with the mean absolute percentage error (MAPE) values, 5.126 and 2.451%, respectively. For maximum TPC, the extraction parameters were determined as ethanol content 57.5% and extraction time 13.56 h. To maximize FRAP, the optimized extraction parameters were ethanol content 72.03% and extraction time 18.04 h. The optimum extraction conditions for both maximum values of the studied assays were ethanol content 70.03% and extraction time 16.93 h. The study concluded that the integrated ANN and MFO algorithm system can be used in single and multi-objective optimization of extraction parameters. The established optimization model can save time, money, labor and energy.
期刊介绍:
The Journal of Apicultural Science is a scientific, English-language journal that publishes both original research articles and review papers covering all aspects of the life of bees (superfamily Apoidea) and broadly defined apiculture. The main subject areas include:
-bee biology-
bee genetics-
bee breeding-
pathology and toxicology-
pollination and bee botany-
bee products-
management, technologies, and economy-
solitary bees and bumblebees