任意直线下路径的Shuffle定理

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. Blasiak, M. Haiman, J. Morse, Anna Y. Pun, G. Seelinger
{"title":"任意直线下路径的Shuffle定理","authors":"J. Blasiak, M. Haiman, J. Morse, Anna Y. Pun, G. Seelinger","doi":"10.1017/fmp.2023.4","DOIUrl":null,"url":null,"abstract":"Abstract We generalize the shuffle theorem and its \n$(km,kn)$\n version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the \n$(km,kn)$\n Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of \n$\\operatorname {\\mathrm {GL}}_{l}$\n characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Shuffle Theorem for Paths Under Any Line\",\"authors\":\"J. Blasiak, M. Haiman, J. Morse, Anna Y. Pun, G. Seelinger\",\"doi\":\"10.1017/fmp.2023.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We generalize the shuffle theorem and its \\n$(km,kn)$\\n version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the \\n$(km,kn)$\\n Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of \\n$\\\\operatorname {\\\\mathrm {GL}}_{l}$\\n characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 22

摘要

摘要我们推广了Haglund等人和Bergeron等人推测的洗牌定理及其$(km,kn)$版本,并分别由Carlsson、Mellit和Mellit证明。在我们的版本中,组合侧的$(km,kn)$Dyck路径被位于x和y截距不必为整数的线段下的格路径所取代,并且代数侧由Schiffmann代数算子公式或等价的显式提升算子公式给出。我们将我们的组合恒等式导出为$\运算符名称{\mathrm{GL}}_{l}$字符的无穷级数的恒等式的多项式截断,用LLT多项式的无穷级数形式表示。所讨论的级数恒等式来自非对称霍尔-利特尔伍德多项式的柯西恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Shuffle Theorem for Paths Under Any Line
Abstract We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $\operatorname {\mathrm {GL}}_{l}$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信