Bi Bali Judicaël Tra, Abollé Abollé, Killian Lucas, François-Xavier Felpin
{"title":"网状型生物碱通过邻喹啉中间体的亲电环化","authors":"Bi Bali Judicaël Tra, Abollé Abollé, Killian Lucas, François-Xavier Felpin","doi":"10.1007/s41981-022-00256-8","DOIUrl":null,"url":null,"abstract":"<p>Herein, we report the first continuous-flow biomimetic cyclization of reticuline derivatives to aporphine alkaloids via <i>ortho</i>-quinol intermediates. The two-step flow process involves an initial oxidative dearomatization of reticuline derivatives to using hypervalent iodine(III) reagents, followed by a TMSOTf-mediated electrophilic cyclization. The high sensitivity of <i>ortho</i>-quinol compounds is mitigated by the mild experimental conditions and fast reaction rates offered by flow reactors. A preliminary structure–reactivity relationship suggests that both steps of the process are favored with strongly electron-rich substrates, similar to what is observed in nature.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 3","pages":"257 - 265"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophilic cyclization of reticuline-type alkaloids in flow via o-quinol intermediates\",\"authors\":\"Bi Bali Judicaël Tra, Abollé Abollé, Killian Lucas, François-Xavier Felpin\",\"doi\":\"10.1007/s41981-022-00256-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herein, we report the first continuous-flow biomimetic cyclization of reticuline derivatives to aporphine alkaloids via <i>ortho</i>-quinol intermediates. The two-step flow process involves an initial oxidative dearomatization of reticuline derivatives to using hypervalent iodine(III) reagents, followed by a TMSOTf-mediated electrophilic cyclization. The high sensitivity of <i>ortho</i>-quinol compounds is mitigated by the mild experimental conditions and fast reaction rates offered by flow reactors. A preliminary structure–reactivity relationship suggests that both steps of the process are favored with strongly electron-rich substrates, similar to what is observed in nature.</p>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 3\",\"pages\":\"257 - 265\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-022-00256-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-022-00256-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrophilic cyclization of reticuline-type alkaloids in flow via o-quinol intermediates
Herein, we report the first continuous-flow biomimetic cyclization of reticuline derivatives to aporphine alkaloids via ortho-quinol intermediates. The two-step flow process involves an initial oxidative dearomatization of reticuline derivatives to using hypervalent iodine(III) reagents, followed by a TMSOTf-mediated electrophilic cyclization. The high sensitivity of ortho-quinol compounds is mitigated by the mild experimental conditions and fast reaction rates offered by flow reactors. A preliminary structure–reactivity relationship suggests that both steps of the process are favored with strongly electron-rich substrates, similar to what is observed in nature.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.