Viola Hobiger, Anna-Lea Kutsch, Jürgen Stampfl, Robert Liska, Stefan Baudis, Peter Krajnc
{"title":"巯基丙烯酸酯聚hipes通过快速逐层光聚合","authors":"Viola Hobiger, Anna-Lea Kutsch, Jürgen Stampfl, Robert Liska, Stefan Baudis, Peter Krajnc","doi":"10.1089/3dp.2022.0289","DOIUrl":null,"url":null,"abstract":"<p><p>A highly reactive thiol-ene high internal phase emulsion based on the monomers 1,6-hexanediol diacrylate and tris 2-(3-mercaptopropionyloxy)ethyl isocyanurate was developed for the purpose of light-driven additive manufacturing, resulting in highly porous customizable poly(high internal phase emulsion) materials. The formulation was specifically designed to facilitate short irradiation times and low amounts of photoinitiator. Furthermore, the developed emulsion does not rely on employing harmful solvents to make scale-up and industrial applications feasible. The selected thiol was added to the printing formulation as a chain-transfer agent, decreasing the brittleness of the acrylate-based system and potential of oxygen inhibition. The thickness of the printed layers lay <50 μm, and the average pore size of all samples was <5 μm.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thiol-Acrylate polyHIPEs via Facile Layer-by-Layer Photopolymerization.\",\"authors\":\"Viola Hobiger, Anna-Lea Kutsch, Jürgen Stampfl, Robert Liska, Stefan Baudis, Peter Krajnc\",\"doi\":\"10.1089/3dp.2022.0289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A highly reactive thiol-ene high internal phase emulsion based on the monomers 1,6-hexanediol diacrylate and tris 2-(3-mercaptopropionyloxy)ethyl isocyanurate was developed for the purpose of light-driven additive manufacturing, resulting in highly porous customizable poly(high internal phase emulsion) materials. The formulation was specifically designed to facilitate short irradiation times and low amounts of photoinitiator. Furthermore, the developed emulsion does not rely on employing harmful solvents to make scale-up and industrial applications feasible. The selected thiol was added to the printing formulation as a chain-transfer agent, decreasing the brittleness of the acrylate-based system and potential of oxygen inhibition. The thickness of the printed layers lay <50 μm, and the average pore size of all samples was <5 μm.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0289\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0289","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Thiol-Acrylate polyHIPEs via Facile Layer-by-Layer Photopolymerization.
A highly reactive thiol-ene high internal phase emulsion based on the monomers 1,6-hexanediol diacrylate and tris 2-(3-mercaptopropionyloxy)ethyl isocyanurate was developed for the purpose of light-driven additive manufacturing, resulting in highly porous customizable poly(high internal phase emulsion) materials. The formulation was specifically designed to facilitate short irradiation times and low amounts of photoinitiator. Furthermore, the developed emulsion does not rely on employing harmful solvents to make scale-up and industrial applications feasible. The selected thiol was added to the printing formulation as a chain-transfer agent, decreasing the brittleness of the acrylate-based system and potential of oxygen inhibition. The thickness of the printed layers lay <50 μm, and the average pore size of all samples was <5 μm.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.