作物保险中潜在相关密度预测的线性汇集

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Ford Ramsey, Yong Liu
{"title":"作物保险中潜在相关密度预测的线性汇集","authors":"A. Ford Ramsey,&nbsp;Yong Liu","doi":"10.1111/jori.12430","DOIUrl":null,"url":null,"abstract":"<p>Accurate pricing of crop insurance policies relies on forecasts of probability densities of crop yields. Yield densities are dynamic, time series data on yields are often limited, and yield data are spatially correlated. We examine linear pooling of potentially related, but almost surely misspecified, crop yield density forecasts. The pooled forecasts combine densities from other spatial units based on out-of-sample forecast performance. The pooled densities result in more accurate premium rates which can reduce incentives for adverse selection. The approach is applicable to any insurance setting where the statistical model for the loss variable is likely to be misspecified and the underlying data-generating processes are potentially related.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"90 3","pages":"769-788"},"PeriodicalIF":4.6000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jori.12430","citationCount":"0","resultStr":"{\"title\":\"Linear pooling of potentially related density forecasts in crop insurance\",\"authors\":\"A. Ford Ramsey,&nbsp;Yong Liu\",\"doi\":\"10.1111/jori.12430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate pricing of crop insurance policies relies on forecasts of probability densities of crop yields. Yield densities are dynamic, time series data on yields are often limited, and yield data are spatially correlated. We examine linear pooling of potentially related, but almost surely misspecified, crop yield density forecasts. The pooled forecasts combine densities from other spatial units based on out-of-sample forecast performance. The pooled densities result in more accurate premium rates which can reduce incentives for adverse selection. The approach is applicable to any insurance setting where the statistical model for the loss variable is likely to be misspecified and the underlying data-generating processes are potentially related.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"90 3\",\"pages\":\"769-788\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jori.12430\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jori.12430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jori.12430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

作物保险政策的准确定价依赖于对作物产量概率密度的预测。产量密度是动态的,产量的时间序列数据往往是有限的,产量数据是空间相关的。我们检查线性池的潜在相关,但几乎肯定是错误的,作物产量密度预测。混合预测结合了基于样本外预测性能的其他空间单元的密度。汇集的密度导致更准确的溢价率,这可以减少逆向选择的激励。该方法适用于损失变量的统计模型可能被错误指定并且潜在的数据生成过程可能相关的任何保险设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Linear pooling of potentially related density forecasts in crop insurance

Linear pooling of potentially related density forecasts in crop insurance

Accurate pricing of crop insurance policies relies on forecasts of probability densities of crop yields. Yield densities are dynamic, time series data on yields are often limited, and yield data are spatially correlated. We examine linear pooling of potentially related, but almost surely misspecified, crop yield density forecasts. The pooled forecasts combine densities from other spatial units based on out-of-sample forecast performance. The pooled densities result in more accurate premium rates which can reduce incentives for adverse selection. The approach is applicable to any insurance setting where the statistical model for the loss variable is likely to be misspecified and the underlying data-generating processes are potentially related.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信