亲水性分子印迹酚胺甲醛树脂

Q4 Materials Science
Y. Petrova, E. V. Bulatova, Dmitry O. Zelentsov, Y. Mateyshina
{"title":"亲水性分子印迹酚胺甲醛树脂","authors":"Y. Petrova, E. V. Bulatova, Dmitry O. Zelentsov, Y. Mateyshina","doi":"10.15826/chimtech.2023.10.3.10","DOIUrl":null,"url":null,"abstract":"Hydrophilic molecularly imprinted resins (MIR), which are produced using hydrophilic monomers such as phenols, aldehydes, melamine or urea, have recently attracted increasing attention for use in separation and preconcentration. Among their obvious advantages are good sorption capacity, high recovery and selectivity, as well as their reusability in aqueous solutions. In this work we applied the bulk molecular imprinting method to produce quercetin-imprinted phenol-amino-formaldehyde resin. For this purpose, phloroglucinol and melamine solutions were mixed with formaldehyde and then polyethylene glycol and quercetin (Qu) were added to the obtained solution as a porogen and a template, respectively. The mixture was stirred under heating, then left in the thermostat for a continuous time. The optimum ratio of phloroglucinol to melamine was 3:1. The average molecular mass of porogen (Mw) varied between 4000–10000 Da. The obtained MIR were eluted with ethanol-water mixture (4:1, v/v) in the Soxhlet extractor for 36 h to remove the template. The MIR were characterized by FTIR-spectroscopy, laser diffraction spectroscopy and differential thermal analysis. The maximum recovery and sorption capacity of MIR synthesized in the presence of a porogen with Mw 10000 were 47% and 4.7 μmol Qu/g, respectively. The maximum imprinting factor was 1.41. The sorption kinetics of quercetin by a non-imprinted resin (NIR) is best described by a pseudo-second-order model, while MIR has a mixed pseudo-first-second-order mechanism.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophilic molecularly imprinted phenol-amine-formaldehyde resins\",\"authors\":\"Y. Petrova, E. V. Bulatova, Dmitry O. Zelentsov, Y. Mateyshina\",\"doi\":\"10.15826/chimtech.2023.10.3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrophilic molecularly imprinted resins (MIR), which are produced using hydrophilic monomers such as phenols, aldehydes, melamine or urea, have recently attracted increasing attention for use in separation and preconcentration. Among their obvious advantages are good sorption capacity, high recovery and selectivity, as well as their reusability in aqueous solutions. In this work we applied the bulk molecular imprinting method to produce quercetin-imprinted phenol-amino-formaldehyde resin. For this purpose, phloroglucinol and melamine solutions were mixed with formaldehyde and then polyethylene glycol and quercetin (Qu) were added to the obtained solution as a porogen and a template, respectively. The mixture was stirred under heating, then left in the thermostat for a continuous time. The optimum ratio of phloroglucinol to melamine was 3:1. The average molecular mass of porogen (Mw) varied between 4000–10000 Da. The obtained MIR were eluted with ethanol-water mixture (4:1, v/v) in the Soxhlet extractor for 36 h to remove the template. The MIR were characterized by FTIR-spectroscopy, laser diffraction spectroscopy and differential thermal analysis. The maximum recovery and sorption capacity of MIR synthesized in the presence of a porogen with Mw 10000 were 47% and 4.7 μmol Qu/g, respectively. The maximum imprinting factor was 1.41. The sorption kinetics of quercetin by a non-imprinted resin (NIR) is best described by a pseudo-second-order model, while MIR has a mixed pseudo-first-second-order mechanism.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.3.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

亲水性分子印迹树脂(MIR)是利用酚、醛、三聚氰胺或尿素等亲水性单体制备的,近年来在分离和预浓缩中的应用越来越受到关注。它们的明显优点包括良好的吸附能力、高回收率和选择性,以及在水溶液中的可重复使用性。本工作采用本体分子印迹法制备槲皮素印迹酚氨基甲醛树脂。为此,将间苯三酚和三聚氰胺溶液与甲醛混合,然后将聚乙二醇和槲皮素(Qu)分别作为成孔剂和模板加入到所获得的溶液中。混合物在加热下搅拌,然后在恒温器中连续放置一段时间。间苯三酚与三聚氰胺的最佳配比为3:1。成孔剂的平均分子量(Mw)在4000–10000 Da之间变化。在Soxhlet萃取器中用乙醇-水混合物(4:1,v/v)洗脱36小时以除去模板。通过红外光谱、激光衍射光谱和差热分析对MIR进行了表征。在Mw为10000的成孔剂存在下合成的MIR的最大回收率和吸附容量分别为47%和4.7μmol Qu/g。最大印迹因子为1.41。非印迹树脂(NIR)对槲皮素的吸附动力学最好用伪二阶模型来描述,而MIR具有混合的伪一阶-二阶机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrophilic molecularly imprinted phenol-amine-formaldehyde resins
Hydrophilic molecularly imprinted resins (MIR), which are produced using hydrophilic monomers such as phenols, aldehydes, melamine or urea, have recently attracted increasing attention for use in separation and preconcentration. Among their obvious advantages are good sorption capacity, high recovery and selectivity, as well as their reusability in aqueous solutions. In this work we applied the bulk molecular imprinting method to produce quercetin-imprinted phenol-amino-formaldehyde resin. For this purpose, phloroglucinol and melamine solutions were mixed with formaldehyde and then polyethylene glycol and quercetin (Qu) were added to the obtained solution as a porogen and a template, respectively. The mixture was stirred under heating, then left in the thermostat for a continuous time. The optimum ratio of phloroglucinol to melamine was 3:1. The average molecular mass of porogen (Mw) varied between 4000–10000 Da. The obtained MIR were eluted with ethanol-water mixture (4:1, v/v) in the Soxhlet extractor for 36 h to remove the template. The MIR were characterized by FTIR-spectroscopy, laser diffraction spectroscopy and differential thermal analysis. The maximum recovery and sorption capacity of MIR synthesized in the presence of a porogen with Mw 10000 were 47% and 4.7 μmol Qu/g, respectively. The maximum imprinting factor was 1.41. The sorption kinetics of quercetin by a non-imprinted resin (NIR) is best described by a pseudo-second-order model, while MIR has a mixed pseudo-first-second-order mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信