地震数据的局部空间对数-高斯Cox过程

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Nicoletta D’Angelo, Marianna Siino, Antonino D’Alessandro, Giada Adelfio
{"title":"地震数据的局部空间对数-高斯Cox过程","authors":"Nicoletta D’Angelo,&nbsp;Marianna Siino,&nbsp;Antonino D’Alessandro,&nbsp;Giada Adelfio","doi":"10.1007/s10182-022-00444-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"106 4","pages":"633 - 671"},"PeriodicalIF":1.4000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00444-w.pdf","citationCount":"10","resultStr":"{\"title\":\"Local spatial log-Gaussian Cox processes for seismic data\",\"authors\":\"Nicoletta D’Angelo,&nbsp;Marianna Siino,&nbsp;Antonino D’Alessandro,&nbsp;Giada Adelfio\",\"doi\":\"10.1007/s10182-022-00444-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"106 4\",\"pages\":\"633 - 671\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10182-022-00444-w.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-022-00444-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00444-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们建议使用先进和灵活的统计模型来描述地震数据的空间位移。本文旨在通过空间变参数模型的估计,在复杂地震点过程的描述中考虑外部地质信息。引入并首次应用了局部版本的log -高斯Cox过程(LGCP),利用Baddeley (Spat Stat 22:26 - 295, 2017)中的推理工具,通过局部Palm似然估计模型。我们提供了考虑点之间相互作用的方法和途径,通常由LGCP模型通过估计高斯随机场的协方差参数来描述,在这个局部版本中,这些参数允许在空间上变化,从而更真实地描述地震事件的聚类特征。此外,我们为诊断框架做出了贡献,概述了适合当地情况的方法,并提出了一种新的逐步方法来解决多协变量的特殊情况。总的来说,我们表明局部模型提供了良好的推理结果,可以作为未来时空局部模型发展的基础,对于复杂地震现象的描述是特殊的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Local spatial log-Gaussian Cox processes for seismic data

Local spatial log-Gaussian Cox processes for seismic data

In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信