非自治离散Selkov模型的统计解和liouville型定理

Pub Date : 2022-11-28 DOI:10.1080/14689367.2022.2147811
Congcong Li, Chunqiu Li, Jintao Wang
{"title":"非自治离散Selkov模型的统计解和liouville型定理","authors":"Congcong Li, Chunqiu Li, Jintao Wang","doi":"10.1080/14689367.2022.2147811","DOIUrl":null,"url":null,"abstract":"In this article, we study the statistical solution of the nonautonomous discrete Selkov model. First, we show the existence of a pullback- attractor for the system and establish the existence of a unique family of invariant Borel probability measures carried by the pullback- attractor. Then we further prove that the family of invariant Borel probability measures is a statistical solution for the discrete system and satisfies a Liouville-type theorem. Finally, we demonstrate that the invariant property of the statistical solution is indeed a particular case of the Liouville-type theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical solution and Liouville-type theorem for the nonautonomous discrete Selkov model\",\"authors\":\"Congcong Li, Chunqiu Li, Jintao Wang\",\"doi\":\"10.1080/14689367.2022.2147811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the statistical solution of the nonautonomous discrete Selkov model. First, we show the existence of a pullback- attractor for the system and establish the existence of a unique family of invariant Borel probability measures carried by the pullback- attractor. Then we further prove that the family of invariant Borel probability measures is a statistical solution for the discrete system and satisfies a Liouville-type theorem. Finally, we demonstrate that the invariant property of the statistical solution is indeed a particular case of the Liouville-type theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2147811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2147811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了非自治离散Selkov模型的统计解。首先,我们证明了系统的回调吸引子的存在性,并建立了由该回调吸引子携带的不变Borel概率测度的唯一族的存在性。然后我们进一步证明了不变Borel概率测度族是离散系统的统计解,并且满足刘维尔型定理。最后,我们证明了统计解的不变性质确实是刘维尔型定理的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Statistical solution and Liouville-type theorem for the nonautonomous discrete Selkov model
In this article, we study the statistical solution of the nonautonomous discrete Selkov model. First, we show the existence of a pullback- attractor for the system and establish the existence of a unique family of invariant Borel probability measures carried by the pullback- attractor. Then we further prove that the family of invariant Borel probability measures is a statistical solution for the discrete system and satisfies a Liouville-type theorem. Finally, we demonstrate that the invariant property of the statistical solution is indeed a particular case of the Liouville-type theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信