{"title":"占用时间泛函的逼近","authors":"R. Altmeyer","doi":"10.3150/21-BEJ1328","DOIUrl":null,"url":null,"abstract":"The strong L2-approximation of occupation time functionals is studied with respect to discrete observations of a d-dimensional cadlag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the literature considerably. The approach relies on regularity for the marginals of the process and applies also to non-Markovian processes, such as fractional Brownian motion. The results are used to approximate occupation times and local times. For Brownian motion, the upper bounds are shown to be sharp up to a log-factor.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":"27 1","pages":"2714-2739"},"PeriodicalIF":1.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Approximation of occupation time functionals\",\"authors\":\"R. Altmeyer\",\"doi\":\"10.3150/21-BEJ1328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong L2-approximation of occupation time functionals is studied with respect to discrete observations of a d-dimensional cadlag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the literature considerably. The approach relies on regularity for the marginals of the process and applies also to non-Markovian processes, such as fractional Brownian motion. The results are used to approximate occupation times and local times. For Brownian motion, the upper bounds are shown to be sharp up to a log-factor.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\"27 1\",\"pages\":\"2714-2739\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/21-BEJ1328\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-BEJ1328","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The strong L2-approximation of occupation time functionals is studied with respect to discrete observations of a d-dimensional cadlag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the literature considerably. The approach relies on regularity for the marginals of the process and applies also to non-Markovian processes, such as fractional Brownian motion. The results are used to approximate occupation times and local times. For Brownian motion, the upper bounds are shown to be sharp up to a log-factor.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.