PathTracer:了解异构MPSoC上信号处理应用程序的响应时间

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Claudio Rubattu, F. Palumbo, S. Bhattacharyya, M. Pelcat
{"title":"PathTracer:了解异构MPSoC上信号处理应用程序的响应时间","authors":"Claudio Rubattu, F. Palumbo, S. Bhattacharyya, M. Pelcat","doi":"10.1145/3513003","DOIUrl":null,"url":null,"abstract":"In embedded and cyber-physical systems, the design of a desired functionality under constraints increasingly requires parallel execution of a set of tasks on a heterogeneous architecture. The nature of such parallel systems complicates the process of understanding and predicting performance in terms of response time. Indeed, response time depends on many factors related to both the functionality and the target architecture. State-of-the-art strategies derive response time by examining the operations required by each task for both processing and accessing shared resources. This procedure is often followed by the addition or elimination of potential interference due to task concurrency. However, such approaches require an advanced knowledge of the software and hardware details, rarely available in practice. This work presents an alternative “top-down” strategy, called PathTracer, aimed at understanding software response time and extending the cases in which it can be analyzed and estimated. PathTracer leverages on dataflow-based application representation and response time estimation of signal processing applications mapped on heterogeneous Multiprocessor Systems-on-a-Chip (MPSoCs). Experimental results demonstrate that PathTracer provides (i) information on the nature of the application (work-dominated, span-dominated, or balanced parallel), and (ii) response time modeling which can reach high accuracy when performed post-execution, leading to prediction errors with average and standard deviation under 5% and 3% respectively.","PeriodicalId":56350,"journal":{"name":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","volume":"6 1","pages":"1 - 30"},"PeriodicalIF":0.7000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PathTracer: Understanding Response Time of Signal Processing Applications on Heterogeneous MPSoCs\",\"authors\":\"Claudio Rubattu, F. Palumbo, S. Bhattacharyya, M. Pelcat\",\"doi\":\"10.1145/3513003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In embedded and cyber-physical systems, the design of a desired functionality under constraints increasingly requires parallel execution of a set of tasks on a heterogeneous architecture. The nature of such parallel systems complicates the process of understanding and predicting performance in terms of response time. Indeed, response time depends on many factors related to both the functionality and the target architecture. State-of-the-art strategies derive response time by examining the operations required by each task for both processing and accessing shared resources. This procedure is often followed by the addition or elimination of potential interference due to task concurrency. However, such approaches require an advanced knowledge of the software and hardware details, rarely available in practice. This work presents an alternative “top-down” strategy, called PathTracer, aimed at understanding software response time and extending the cases in which it can be analyzed and estimated. PathTracer leverages on dataflow-based application representation and response time estimation of signal processing applications mapped on heterogeneous Multiprocessor Systems-on-a-Chip (MPSoCs). Experimental results demonstrate that PathTracer provides (i) information on the nature of the application (work-dominated, span-dominated, or balanced parallel), and (ii) response time modeling which can reach high accuracy when performed post-execution, leading to prediction errors with average and standard deviation under 5% and 3% respectively.\",\"PeriodicalId\":56350,\"journal\":{\"name\":\"ACM Transactions on Modeling and Performance Evaluation of Computing Systems\",\"volume\":\"6 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Performance Evaluation of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3513003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3513003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在嵌入式和网络物理系统中,在约束下设计期望的功能越来越需要在异构架构上并行执行一组任务。这种并行系统的性质使理解和预测响应时间方面的性能的过程变得复杂。实际上,响应时间取决于与功能和目标体系结构相关的许多因素。最先进的策略通过检查每个任务处理和访问共享资源所需的操作来获得响应时间。在此过程之后,通常会添加或消除由于任务并发性而产生的潜在干扰。然而,这种方法需要对软件和硬件细节有深入的了解,而这在实践中很少能得到。这项工作提出了另一种“自上而下”的策略,称为PathTracer,旨在理解软件响应时间,并扩展可以分析和估计的情况。PathTracer利用基于数据流的应用程序表示和映射在异构多处理器单片系统(mpsoc)上的信号处理应用程序的响应时间估计。实验结果表明,PathTracer提供了(i)关于应用程序性质的信息(工作主导、跨度主导或平衡并行),以及(ii)响应时间建模,在执行后执行时可以达到很高的精度,导致平均和标准偏差分别在5%和3%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PathTracer: Understanding Response Time of Signal Processing Applications on Heterogeneous MPSoCs
In embedded and cyber-physical systems, the design of a desired functionality under constraints increasingly requires parallel execution of a set of tasks on a heterogeneous architecture. The nature of such parallel systems complicates the process of understanding and predicting performance in terms of response time. Indeed, response time depends on many factors related to both the functionality and the target architecture. State-of-the-art strategies derive response time by examining the operations required by each task for both processing and accessing shared resources. This procedure is often followed by the addition or elimination of potential interference due to task concurrency. However, such approaches require an advanced knowledge of the software and hardware details, rarely available in practice. This work presents an alternative “top-down” strategy, called PathTracer, aimed at understanding software response time and extending the cases in which it can be analyzed and estimated. PathTracer leverages on dataflow-based application representation and response time estimation of signal processing applications mapped on heterogeneous Multiprocessor Systems-on-a-Chip (MPSoCs). Experimental results demonstrate that PathTracer provides (i) information on the nature of the application (work-dominated, span-dominated, or balanced parallel), and (ii) response time modeling which can reach high accuracy when performed post-execution, leading to prediction errors with average and standard deviation under 5% and 3% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信